Laboratory for ChemoMetrics, Vienna (Austria)

MS - Chemometrics - COSIMA

 

Literature

 

Start

COSIMA

Top

[ Aims | People | Results | Presentations | Pictures | ROSETTA | COSIMA Instrument | Comet Wirtanen | Literature ]

Info

Last update 2000-12-04

 

 

Selected references relevant to the project MS-Chemometrics-COSIMA

 

Thanks to contributors

J. Kissel, F.R. Krueger, E.R. Schmid, W. Werther

Thanks to H. Urban (LCM) for tedious work with data input.

 

New contributions welcome    J

 

Data format for software ENDNOTE preferred.

Other formats possible.

Contact:  K. Varmuza

 

 

Sorted by author(s) and year. Sorry, no search tools are available.

 

(1)     Adams M. J.: Chemometrics in analytical spectroscopy; The Royal Society of Chemistry: Cambridge (UK) (1995).

 

(2)     Allmaier G.: Chemie (Wien), 10-13 (Dezember) (1994). Die Wiederentdeckung einer alten Technik. Die Renaissance der Flugzeitmassenspektrometrie als Spurenbereichsmethode für die Bio- und Umweltanalytik.

 

(3)     Amici S., Piccioni G., Coradini A., Solazzo S.: Planet. Space Sci., 48, 401-410 (2000). VIRTIS-M laboratory spectral measurements of analogues cometary samples.

 

(4)     Ashcroft A. E.: Ionization methods in organic mass spectrometry; The Royal Society of Chemistry: Cambridge (1997).

 

(5)     Basiuk V. A., Douda J.: Planet. Space Sci., 47, 577-584 (1999). Pyrolysis of simple amino acids and nucleobases: survivability limits and implications for extraterrestrial delivery.

 

(6)     Beebe K. R., Pell R. J., Seasholtz M. B.: Chemometrics: A practical guide; John Wiley & Sons: New York (1998).

 

(7)     Benkhoff J.: Planet. Space Sci., 47, 735-744 (1999). Energy balance and the gas flux from the surface of comet 46P/Wirtanen.

 

(8)     Benninghoven A.: Angew. Chem. Int. Ed. Engl., 33, 1023-1043 (1994). Chemical analysis of inorganic and organic surfaces and thin films by static time-of-flight secondary ion mass spectrometry (TOF-SIMS).

 

(9)     Benninghoven A., Sichtermann W. K.: Anal. Chem., 50, 1180-1184 (1978). Detection, identification and structural investigation of biologically important compounds by secondary ion mass spectrometry.

 

(10)   Bertaux J. L., Costa J., Mäkinen T., Quemerais E., Lallement R., Kyrölä E., Schmidt W.: Planet. Space Sci., 47, 725-733 (1999). Lyman-alpha observations of comet 46P/Wirtanen with SWAN on SOHO: H2O production rate near 1997 perihelion.

 

(11)   Blanco A., Fonti S., Orofino V.: Planet. Space Sci., 47, 781-785 (1999). The 4.6 micron feature of -SiH groups in silicate dust grains and infrared cometary spectra.

 

(12)   Blanksby S. J., Dua S., Bowie J. H.: Rapid Commun. Mass Spectrom., 13, 2249-2251 (1999). Interstellar molecules. Conversion of C3O-. to C3O in the gas phase.

 

(13)   Bourcier S., Hoppilliard Y., Kargar T.: Rapid. Comm. Mass Spectrom., 11, 1046-1056 (1997). Analysis of aromatic pesticides by mass spectrometry. Advantage of plasma desorption over electron impact and NH3 or CH4 positive chemical ionization: The competitive formation of M+. and MH+ ions.

 

(14)   Brack A.: Planet. Space Sci., 48, 1023-1026 (2000). The exobiology exploration of Mars: a survey of the European approaches.

 

(15)   Broadhurst D., Goodacre R., Jones A., Rowland J. J., Kell D. B.: Anal. Chim. Acta, 348, 71-86 (1997). Genetic algorithms as a method for variable selection in multiple linear regression and partial least squares regression, with applications to pyrolysis mass spectromerty.

 

(16)   Brucato J. R., Colangeli L., Mennella V., Palumbo P., Bussoletti E.: Planet. Space Sci., 47, 773-779 (1999). Silicates in Hale-Bopp: Hints from laboratory studies.

 

(17)   Brunelle A., Della-Negra S., Depauw J., Joret H., Le Beyec Y.: Rapid Commun. Mass Spectrom., 5, 40-43 (1991). Time-of-flight mass spectrometry with a compact two-stage electrostatic mirror: Metastable-ion studies with high mass resolution and ion emission from thick insulators.

 

(18)   Carroll J. A., Beavis R. C.: Rapid. Comm. Mass Spectrom., 10, 1683-1687 (1996). Using matrix convolution filters to extract information from time-of-flight mass spectra.

 

(19)   Chapman J. R.: Practical organic mass spectrometry. A guide for chemical and biochemical analysis; 2 ed.; John Wiley & Sons: Chichester (1993).

 

(20)   Coles J., Guilhaus M.: Trends Anal. Chem., 12, 203-213 (1993). Orthogonal acceleration - a new direction for time-of-flight mass spectrometry: fast, sensitive mass analysis for continuous ion sources.

 

(21)   Cotter R. J.: Anal. Chem., 64, 1027A-1039A (1992). Time-of-flight mass spectrometry for the structural analysis of biological molecules.

 

(22)   Cotter R. J.: Time-of-flight mass spectrometry. Instrumentation and applications in biological research; American Chemical Society: Washington, DC (1997).

 

(23)   Cottin H., Gazeau M. C., Raulin F.: Planet. Space Sci., 47, 1141-1162 (1999). Cometary organic chemistry: A review from observations, numerical and experimental simulations.

 

(24)   Crifo J. F., Rodionov A. V.: Planet. Space Sci., 47, 797-826 (1999). Modelling the circumnuclear coma of comets: Objectives, methods and recent results.

 

(25)   Cuynen E., Van Vaeck L., Van Espen P.: Rapid Commun. Mass Spectrom., 13, 2287-2301 (1999). Speciation analysis of oxides with static secondary ion mass spectrometry.

 

(26)   De Laeter J. R.: Mass Spectrom. Rev., 13, 3-22 (1994). Role of isotope mass spectrometry in cosmic abundance studies.

 

(27)   De Sanctis M. C., Capaccioni F., Capria M. T., Coradini A., Federico C., Orosei R., Salomone M.: Planet. Space Sci., 47, 855-872 (1999). Models of P/Wirtanen nucleus: Active regions versus non-active regions.

 

(28)   Delsemme A. H.: Planet. Space Sci., 47, 125-131 (1999). The deuterium enrichment observed in recent comets is consistent with the cometary origin of seawater.

 

(29)   Demuth W.: Chemometrische Auswertung massenspektrometrischer Daten zur Erkennung organischer Substanzen im Kometenstaub (Diplomarbeit), Technische Universität Wien (1998).

 

(30)   Doroshenko V. M., Cotter R. J.: J. Am. Soc. Mass Spectrom., 10, 992-999 (1999). Ideal velocity focusing in a reflectron time-of-flight mass spectrometer.

 

(31)   Drablos F.: Anal. Chim. Acta, 256, 145-151 (1992). Transformation of mass spectra.

 

(32)   Drouot C., Enjalbal C., Fulcrand P., Martinez J., Aubagnac J.-L., Combarieu R., de Puydt Y.: Rapid. Comm. Mass Spectrom., 10, 1509-1511 (1996). Step-by-step control by time-of-flight secondary ion mass spectrometry of a peptide synthesis carried out on polymer beads.

 

(33)   Dua S., Blanksby S. J., Bowie J. H.: Rapid Commun. Mass Spectrom., 14, 118-121 (1999). Potential interstellar molecules. Formation of neutral C6CO from C6CO- in the gas phase.

 

(34)   Enjalbal C., Martinez J., Subra G., Combarieu R., Aubagnac J.-L.: Rapid. Comm. Mass Spectrom., 12, 1715-1720 (1998). Time-of-flight secondary ion mass spectrometry of Fmoc-amino acids linked to solid supports through ionic interactions.

 

(35)   Enke C. G.: In Advances in mass spectrometry; Karjalainen E. J., Hesso A. E., Jalonen J. E., Karjalainen U. P., Eds.; Elsevier: Amsterdam, Vol. 14, p. 197-219 (1998). The unique capabilities of time-of-flight mass analyzers.

 

(36)   Epifani E., Rotundi A., Foster M. J., Green S. F., Colangeli L., Fulle M., Mennella V., Palumbo P.: Planet. Space Sci., 47, 765-772 (1999). VRI imaging of comet 46P/Wirtanen.

 

(37)   Eskinja M., Zöllner P., Linnemayr K., Mak M., Schmid E. R.: Rapid. Comm. Mass Spectrom., 11, 931-935 (1997). Characterization of mercapturic acids by three different mass spectrometric methods.

 

(38)   Fergenson D. P., Liu D. Y., Silva P. J., Prather K. A.: Chemom. Intell. Lab. Syst., 37, 197-203 (1997). SpectraSort: A data analysis program for real-time aerosol analysis by aerosol time-of-flight mass spectrometry.

 

(39)   Fisher A. A., Hawkes R. L., Murray I. S., Campbell M. D., LeBlanc A. G.: Planet. Space Sci., 48, 911-920 (2000). Are meteoroids really dustballs?

 

(40)   Franck S., Block A., von Bloh W., Bounama C., Schellnhuber H. J., Svirezhev Y.: Planet. Space Sci., 48, 1099-1105 (2000). Habitable zone for earth-like planets in the solar system.

 

(41)   Fujii T., Arulmozhiraja S.: Int. J. Mass Spectrom., 198, 15-21 (2000). Application of In+ ions in ion attachment mass spectrometry.

 

(42)   Fulle M.: Planet. Space Sci., 47, 827-837 (1999). Constraints on comet 46P/Wirtanen dust parameters provided by in-situ and ground-based observations.

 

(43)   Fürstenau N.: Z. Naturforsch., 33a, 563-570 (1978). A method for the study of correlated events in time-of-flight mass-spectrometry and its application to fission-fragment induced desorption.

 

(44)   Fürstenau N., Knippelberg W., Krueger F. R., Weiß G., Wien K.: Z. Naturforsch., 32a, 711-719 (1977). Experimental investigation about the mechanism of fission-fragment induced desorption.

 

(45)   Gardner B. D., Holland J. F.: J. Am. Soc. Mass Spectrom., 10, 1067-1073 (1999). Nonlinear ion acceleration for improved space focusing in time-of-flight mass spectrometry.

 

(46)   Geladi P., Kowalski B. R.: Anal. Chim. Acta, 185, 1-17 (1986). Partial least-squares regression: A tutorial.

 

(47)   Greenberg J. M.: Astron. Astrophys., 330, 375-380 (1998). Making a comet nucleus.

 

(48)   Greenberg J. M., Li A.: Planet. Space Sci., 47, 787-795 (1999). All comets are born equal: Infrared emission by dust as a key to comet nucleus composition.

 

(49)   Gubskaya A. V., Aksyonov S. A., Kalinkevich A. N., Lisnyak Y. V., Chuev V. P., Chivanov V. D.: Rapid. Comm. Mass Spectrom., 11, 1874-1878 (1997). 252Cf plasma desorption mass spectrometric study of the inclusion complexes of cyclodextrins with coumarins.

 

(50)   Guilhaus M.: J. Am. Soc. Mass Spectrom., 5, 588-595 (1994). Spontaneous and deflected drift-trajectories in  orthogonal acceleration time-of-flight mass spectrometry.

 

(51)   Guilhaus M.: J. Mass Spectrom., 30, 1519-1532 (1995). Principles and instrumentation in time-of-flight mass spectrometry. Physical and instrumental concepts.

 

(52)   Guilhaus M.: In Advances in mass spectrometry; Cornides I., Horvath G., Vekey K., Eds.; Wiley: Amsterdam, Vol. 13, p. 213-226 (1995). The return of time-of-flight to analytical mass spectrometry.

 

(53)   Guilhaus M., Mlynski V., Selby D.: Rapid. Comm. Mass Spectrom., 11, 951-962 (1997). Perfect timing: Time-of-flight mass spectrometry.

 

(54)   Hanley L., Kornienko O., Ada E. T., Fuoco E., Trevor J. L.: J. Mass Spectrom., 34, 705-723 (1999). Surface mass spectrometry of molecular species.

 

(55)   Harris R. D., Baker W. S., Van Stipdonk M. J., Crooks R. M., Schweikert E. A.: Rapid. Comm. Mass Spectrom., 13, 1374-1380 (1999). Secondary ion yields produced by keV atomic and polyatomic ion impacts on a self-assembled monolayer surface.

 

(56)   Herique A., Kofman W., Hagfors T., Caudal G., Ayanides J.-P.: Planet. Space Sci., 47, 885-904 (1999). A characterization of a comet nucleus interior: Inversion of simulated radio frequency data.

 

(57)   Herrero A., Ortiz M. C.: Anal. Chim. Acta, 378, 245-259 (1999). Qualitative and quantitative aspects of the application of genetic algorithm-based variable selection in polarography and stripping voltammetry.

 

(58)   Hibbert D. B.: Chemom. Intell. Lab. Syst., 19, 277-293 (1993). Genetic algorithms in chemistry.

 

(59)   Hilchenbach M., Küchemann O., Rosenbauer H.: Planet. Space Sci., 48, 361-369 (2000). Impact on a comet: Rosetta lander simulations.

 

(60)   Hinz K. P., Greweling M., Drews F., Spengler B.: J. Am. Soc. Mass Spectrom., 10, 648-660 (1999). Data processing in on-line laser mass spectrometry of inorganic, organic, or biological airborne particles.

 

(61)   Hinz K. P., Kaufmann R., Spengler B.: Aerosol. Sci. Technol., 24, 233-242 (1996). Simultaneous detection of positive and negative ions from single airborne particles by real-time laser mass spectrometry.

 

(62)   Horneck G.: Planet. Space Sci., 48, 1053-1063 (2000). The microbial world and the case for Mars.

 

(63)   Hughes D. W.: Planet. Space Sci., 48, 1-7 (2000). On the velocity of large cometary dust particles.

 

(64)   Hutter H., Grasserbauer M.: Chemom. Intell. Lab. Syst., 24, 99-116 (1994). Chemometrics for surface analysis.

 

(65)   Ingram J. C., Groenewold G. S., Appelhans A. D., Delmore J. E., Olson J. E., Miller D. L.: Environ. Sci. Technol., 31, 402-408 (1997). Direct surface analysis of pesticides on soil, leaves, grass, and stainless steel by static secondary ion mass spectrometry.

 

(66)   Joblin C., Masselon C., Boissel P., de Parseval P., Martinovic S., Muller J.-F.: Rapid. Comm. Mass Spectrom., 11, 1619-1623 (1997). Simulation of interstellar aromatic hydrocarbons using ion cyclotron resonance. Preliminary results.

 

(67)   Johnson K. J.: Numerical methods in chemistry; Marcel Dekker: New York (1980).

 

(68)   Juvet R. S., Allmaier G. M., Schmid E. R.: Anal. Chim. Acta, 241, 241-248 (1990). Identification of chemical background interferences in plasma desorption mass spectrometry.

 

(69)   Kaiser R. I., Asvany O., Lee Y. T.: Planet. Space Sci., 48, 483-492 (2000). Crossed beam investigation of elementary reactions relevant to the formation of polycyclic aromatic hydrocarbon (PAH)-like molecules in extraterrestrial environments.

 

(70)   Keil K.: Planet. Space Sci., 48, 887-903 (2000). Thermal alteration of asteroids: evidence from meteorites.

 

(71)   Keller B. A.: Helv. Phys. Acta, 69, 1-2 (Separanda) (1996). Time-of-flight secondary ion mass spectrometry: A new versatile tool for surface analysis.

 

(72)   Keller B. A., Hug P.: Anal. Chim. Acta, 393, 201-212 (1999). Time-of-flight secondary ion mass spectrometry of industrial materials.

 

(73)   Kimura T., Hasegawa K., Funatsu K.: J. Chem. Inf. Comput. Sci., 38, 276-282 (1998). GA strategy for variable selection in QSAR studies: GA-based region selection for CoMF modeling.

 

(74)   Kissel J., Brownlee D. E., Büchler K., Clark B. C., Fechtig H., Grün E., Hornung K., Igenbergs E. B., Jessberger E. K., Krueger F. R., Kuczera H., Mc Donnell J. A. M., Morfill G. M., Rahe J., Schwehm G. H., Sekanina Z., Utterback N. G., Völk H. J., Zook H. A.: Nature, 321, 336-337 (1986). Composition of comet Halley dust particles from Giotto observations.

 

(75)   Kissel J., Krueger F. R.: Nature, 326, 755-760 (1987). The organic component in dust from comet Halley as measured by the PUMA mass spectrometer on board Vega 1.

 

(76)   Kissel J., Krueger F. R.: Spektrum der Wissenschaft, 65-71 (2000). Urzeugung aus Kometenstaub?

 

(77)   Kissel J., Sagdeev R. Z., Bertaux J. L., Angarov V. N., Audouze J., Blamont J. E., Büchler K., Evlanov E. N., Fechtig H., Fomenkova M. N., von Hoerner H., Inogamov N. A., Khromov V. N., Knabe W., Krueger F. R., Langevin Y., Leonas V. B., Levasseur-Regourd A. C., Managadze G. G., Podkolzin S. N., Shapiro V. D., Tabaldyev S. R., Zubkov B. V.: Nature, 321, 280-282 (1986). Composition of comet Halley dust particles from Vega observations.

 

(78)   Klawun C., Wilkins C. L.: J. Chem. Inf. Comput. Sci., 36, 249-257 (1996). Joint neural network interpretation of infrared and mass spectra.

 

(79)   Klöppel K. D., Weyer K., Von Bünau G.: Int. J. Mass Spectrom. Ion Phys., 51, 47-61 (1983). Secondary-ion mass spectrometry (SIMS) of organic compounds. I. Sample preparation methods.

 

(80)   Kminek G., Bada J. L., Botta O., Glavin D. P., Grunthaner F.: Planet. Space Sci., 48, 1087-1091 (2000). MOD: an organic detector for the future robotic exploration of Mars.

 

(81)   Kochan H., Feibig W., Konopka U., Kretschmer M., Möhlmann D., Seidensticker K. J., Arnold W., Gebhardt W., Licht R.: Planet. Space Sci., 48, 385-399 (2000). CASSE - The ROSETTA lander comet acoustic surface sounding experiment - status of some aspects, the technical realisation and laboratory simulations.

 

(82)   Kohonen T.: Self-organizing maps; Springer: Berlin (1995).

 

(83)   Kramer R.: Chemometric techniques for quantitative analysis; Marcel Dekker: New York (1998).

 

(84)   Krueger F. R.: Nucl. Instr. and Meth., 125, 285-287 (1975). Ein Verfahren zur Auswertung der Messdaten von Neutronenmultiplizitäten.

 

(85)   Krueger F. R.: Surface  Science, 86, 246-256 (1979). Fast ion induced desorption and collective electronic perturbation at the surface.

 

(86)   Krueger F. R., Kissel J.: Origins of Life & Evol. of the Biosph., 19, 87-93 (1989). Biogenesis by cometary grains - thermodynamic aspects of self-organization.

 

(87)   Krueger F. R., Kissel J.: Sterne und Weltraum, 326-329 (2000). Erste direkte chemische Analyse interstellarer Staubteilchen.

 

(88)   Krüger H., Grün E., Hamilton D. P., Baguhl M., Dermott S., Fechtig H., Gustafson B. A., Hanner M. S., Horanyi M., Kissel J., Lindblad B. A., Linkert D., Linkert G., Mann I., Mc Donnell J. A. M., Morfill G. E., Polanskey C., Riemann R., Schwehm G., Srama R., Zook H. A.: Planet. Space Sci., 47, 85-106 (1999). Three years of Galileo dust data: II. 1993- 1995.

 

(89)   Laffont C., Rousselot P., Clairemidi J., Moreels G.: Planet. Space Sci., 46, 585-601 (1998). Condensations and diffuse source of C2 in comet Hyakutake C/1996 B2.

 

(90)   Lampen P., Trauthan F., Dummel A., Arnold G., Jaumann R.: Anal. Chim. Acta, 420, 229-237 (2000). Spectroscopic and photometric evaluation of images from the Mars Pathfinder camera.

 

(91)   Landgraf M., Müller M., Grün E.: Planet. Space Sci., 47, 1029-1050 (1999). Prediction of the in-situ dust measurements of the stardust mission to comet 81P/Wild 2.

 

(92)   Latkoczy C., Hutter H., Grasserbauer M., Wilhartitz P.: Mikrochim. Acta, 119, 1-12 (1995). Classification of secondary ion mass spectrometry (SIMS) micrographs to characterize chemical phases.

 

(93)   Lawler M. E., Brownlee D. E.: Nature, 359, 810-812 (1992). CHON as a component of dust from comet Halley.

 

(94)   Leardi R.: J. Chemom., 8, 65-79 (1994). Application of a genetic algorithm to feature selection under full validation conditions and to outlier detection.

 

(95)   Leardi R.: J. Chemom., in print (2000). The application of genetic algorith-PLS for feature selection in spectral data sets.

 

(96)   Leardi R., Gonzales A. L.: Chemom. Intell. Lab. Syst., 41, 195-207 (1998). Genetic algorithms applied to feature selection in PLS regression: how and when to use them.

 

(97)   Linnemayr K., Schmid E. R., Allmaier G.: Rapid. Comm. Mass Spectrom., 11, 427-432 (1997). Characterization of calixarenes by positive- and negative-ion Californium-252 plasma desorption mass spectrometry.

 

(98)   Maeder M., Ebel S.: Chemom. Intell. Lab. Syst., 37, 205-207 (1997). Data evaluation for the characterization of individual aerosol particles using time-of-flight mass spectrometry.

 

(99)   Mamyrin B. A.: Int. J. Mass Spectrom. Ion Processes, 131, 1-19 (1994). Laser assisted reflectron time-of-flight mass spectrometry.

 

(100)  Mamyrin B. A., Shmikk D. V.: Sov. Phys. JETP, 49, 762-764 (1979). The linear mass reflectron.

 

(101)  Managadze G. G., Shutyaev I. Y.: In Laser ionization mass analysis; Vertes A., Gijbels R., Adams F., Eds.; John Wiley & Sons: New York, Vol. 124, p. 505-549 (1993). Exotic instruments and applications of laser ionization mass spectrometry in space research.

 

(102)  Mancinelli R. L.: Planet. Space Sci., 48, 1035-1042 (2000). Accessing the Martian deep subsurface to search for life.

 

(103)  Mancinelli R. L., Klovstad M.: Planet. Space Sci., 48, 1093-1097 (2000). Martian soil and UV radiation: microbial viability assessment on spacecraft surfaces.

 

(104)  Martens H., Naes T.: Multivariate calibration; Wiley: Chichester (1989).

 

(105)  Massart D. L., Vandeginste B. G. M., Buydens L. C. M., De Jong S., Smeyers-Verbeke J.: Handbook of chemometrics and qualimetrics: Part A; Elsevier: Amsterdam (1997).

 

(106)  Maurette M., Duprat J., Engrand C., Gounelle M., Kurat G., Matrajt G., Toppani A.: Planet. Space Sci., 48, 1117-1137 (2000). Accretion of neon, organics, CO2, nitrogen and water from large interplanetary dust particles on the early Earth.

 

(107)  McLafferty F. W., Loh S. Y., Stauffer D. S.: In Computer-enhanced analytical spectroscopy; Meuzelaar H. L. C., Ed.; Plenum Press: New York, Vol. 2, p. 163-181 (1990). Computer identification of mass spectra.

 

(108)  Milani A., Chesley S. R., Valsecchi G. B.: Planet. Space Sci., 48, 945-954 (2000). Asteroid close encounters with Earth: risk assessment.

 

(109)  Mileikowsky C., Cucinotta F. A., Wilson J. W., Gladman B., Horneck G., Lindegren L., Melosh J., Rickman H., Valtonen M., Zheng J. Q.: Planet. Space Sci., 48, 1107-1115 (2000). Risks threatening viable transfer of microbes between bodies in our solar system.

 

(110)  Möhlmann D.: Planet. Space Sci., 47, 971-974 (1999). Activity and nucleus properties of 46P/Wirtanen.

 

(111)  Moskovets E., Vertes A.: Rapid Commun. Mass Spectrom., 13, 2244-2248 (1999). A novel scheme for the time-of-flight analysis of extended ion packets.

 

(112)  Mucke H.: Chemie (Wien), 10-12 (März) (1996). Chemie ohne Grenzen.

 

(113)  Niehuis E.: Entwicklung und Anwendung von hochauflösenden Flugzeitspektrometern für die statische Sekundärionen-Massenspektrometrie (Doktorarbeit), Westfälische Wilhelms- Universität (1988).

 

(114)  Oro J.: Nature, 190, 389-390 (1961). Comets and the formation of biochemical compounds on the primitive earth.

 

(115)  Orosei R., Capaccioni F., Capria M. T., Coradini A., De Sanctis M. C., Federico C., Salomone M., Huot J.-P.: Planet. Space Sci., 47, 839-853 (1999). Numerically improved thermochemical evolution models of comet nuclei.

 

(116)  Pailer N., Grün E., Bahr D., Lang D.: Planet. Space Sci., 31, 11-23 (1983). Laboratory simulation of cometary dust collection and analysis.

 

(117)  Picciono G., Amici S., Fonti S., Coradini A., Capaccioni F., Dami M.: Planet. Space Sci., 48, 411-417 (2000). Efficiency measurements of the VIRTIS-M grating.

 

(118)  Pilipenko V. V., Sukhodub L. F., Aksyonov S. A., Kalinkevich A. N., Kintia P. K.: Rapid Commun. Mass Spectrom., 14, 819-823 (2000). 252Cf plasma desorption mass spectrometric study of interactions of steroid glycosides with amino acids.

 

(119)  Price D.: Trends Anal. Chem., 9, 21-25 (1990). The resurgence in time-of-flight mass spectrometry.

 

(120)  Rossi A., Fulchignoni M.: Planet. Space Sci., 47, 873-881 (1999). Study of the environment around the Rosetta candidate target asteroids.

 

(121)  Rotundi A., Rietmeijer F. J. M., Brucato J. R., Colangeli L., Mennella V., Palumbo P., Bussoletti E.: Planet. Space Sci., 48, 371-384 (2000). Refractory comet dust analogues by laser bombardment and arc discharge production: a reference frame for "dusty experiments" on-board ROSETTA.

 

(122)  Rüdenauer F., Riedler W., Cherepin V. T.: In Advances in mass spectrometry; Karjalainen E. J., Hesso A. E., Jalonen J. E., Karjalainen U. P., Eds.; Elsevier: Amsterdam, Vol. 14, p. 705-711 (1998). MIGMAS - an analytical ion microprobe for the space station MIR.

 

(123)  Scheeres D. J., Marzari F., Tomasella L., Vanzani V.: Planet. Space Sci., 46, 649-671 (1998). ROSETTA mission: Satellite orbits around a cometary nucleus.

 

(124)  Scheifers S. M., Hollar R. C., Busch K. L., Cooks R. G.: Int. Lab., 12-22 (1982). Molecular secondary ion mass spectrometry.

 

(125)  Scsibrany H., Varmuza K.: In Software development in chemistry; Jochum C., Ed.; Gesellschaft Deutscher Chemiker: Frankfurt am Main, Vol. 8, p. 235-249 (1994). ToSiM: PC-Software for the investigation of topological similarities in molecules.

 

(126)  Sharaf M. A., Illman D. L., Kowalski B. R.: Chemometrics; John Wiley & Sons: New York (1986).

 

(127)  Stein S. E.: J. Am. Soc. Mass Spectrom., 6, 644-655 (1995). Chemical substructure identification by mass spectral library searching.

 

(128)  Suma K., Raju N. P., Vairamani M.: Rapid. Comm. Mass Spectrom., 11, 1939-1944 (1997). Liquid secondary ion mass spectral study of fatty acid methyl esters: Silver cationization and collision induced dissociation studies.

 

(129)  Sundqvist B., Macfarlane R. D.: Mass Spectrom. Rev., 4, 421-460 (1985). 252Cf-Plasma desorption mass spectrometry.

 

(130)  Terzieva R., Herbst E.: Int. J. Mass Spectrom., 201, 135-142 (2000). Radiative electron attachment to small linear carbon clusters and its significance for the chemistry of diffuse interstellar clouds.

 

(131)  Toyoda M., Ishihara M., Yamaguchi S. I., Ito H., Matsuo T., Roll R., Rosenbauer H.: J. Mass Spectrom., 35, 163-167 (2000). Construction of a new multi-turn time-of-flight mass spectrometer.

 

(132)  Vacher J. R., Le Duc E., Fitaire M.: Planet. Space Sci., 47, 151-162 (1999). Titan's atmosphere: Possible clustering reactions of HCNH+, HCNH+ (N2) and HCNH+ (CH4) ions with acetylene.

 

(133)  Van Deursen M. M., Beens J., Janssen H. G., Leclercq P. A., Cramers C. A.: J. Chromatogr. A, 878, 205-213 (2000). Evaluation of time-of-flight mass spectrometric detection for fast gas chromatography.

 

(134)  Van Stipdonk M. J., Harris R. D., Schweikert E. A.: Rapid. Comm. Mass Spectrom., 11, 1794-1798 (1997). Time-of-flight-secondary ion mass spectrometry of NaBF4: A comparison of atomic and polyatomic primary ions at constant impact energy.

 

(135)  Vandeginste B. G. M., Massart D. L., Buydens L. C. M., De Jong S., Smeyers-Verbeke J.: Handbook of chemometrics and qualimetrics: Part B; Elsevier: Amsterdam (1998).

 

(136)  Vanden Eynde X., Oike H., Hamada M., Tezuka Y., Bertrand P.: Rapid. Comm. Mass Spectrom., 13, 1917-1923 (1999). Evidence of simple intramolecular rearrangement at polymer end groups in secondary ion mass spectrometry.

 

(137)  Varmuza K.: In The encyclopedia of computational chemistry; Schleyer P. v. R., Allinger N. L., Clark T., Gasteiger J., Kollman P. A., Schaefer I. H. F., Schreiner P. R., Eds.; Wiley & Sons: Chichester, Vol. 1, p. 346-366 (1998). Chemometrics: Multivariate view on chemical problems.

 

(138)  Varmuza K.: In Encyclopedia of spectroscopy and spectrometry; Lindon J. C., Tranter G. E., Holmes J. L., Eds.; Academic Press: Londonp. 232-243 (2000). Chemical structure information from mass spectra.

 

(139)  Varmuza K., Scsibrany H.: J. Chem. Inf. Comput. Sci., 40, 308-313 (2000). Substructure isomorphism matrix.

 

(140)  Varmuza K., Werther W.: J. Chem. Inf. Comput. Sci., 36, 323-333 (1996). Mass spectral classifiers for supporting systematic structure elucidation.

 

(141)  Varmuza K., Werther W.: In Advances in mass spectrometry; Karjalainen E. J., Hesso A. E., Jalonen J. E., Karjalainen U. P., Eds.; Elsevier: Amsterdam, Vol. 14, p. 611-626 (1998). Systematic structure elucidation of organic compounds based on mass spectra classification and isomer generation.

 

(142)  Varmuza K., Werther W., Krueger F. R., Kissel J., Schmid E. R.: Int. J. Mass Spectrom., 189, 79-92 (1999). Organic substances in cometary grains: Comparison of secondary ion mass spectral data and Californium-252 plasma desorption data from reference compounds.

 

(143)  Varmuza K., Werther W., Stancl F., Kerber A., Laue R.: In Software development in chemistry; Gasteiger J., Ed.; Gesellschaft Deutscher Chemiker: Frankfurt am Main, Vol. 10, p. 303-314 (1996). Computer-assisted structure elucidation of organic compounds, based on mass spectra classification and exhaustive isomer generation.

 

(144)  Vergne J., Dumas L., Décout J. L., Maurel M. C.: Planet. Space Sci., 48, 1139-1142 (2000). Possible prebiotic catalysts formed from adenine and aldehyde.

 

(145)  Viggiano A. A., Hunton D. E.: J. Mass Spectrom., 34, 1107-1129 (1999). Airborne mass spectrometers: Four decades of atmospheric and space research at the Air Force Research Laboratory.

 

(146)  Wegmann R., Jockers K., Bonev T.: Planet. Space Sci., 47, 745-763 (1999). H2O+ ions in comets: Models and observations.

 

(147)  Werther W., Varmuza K.: In Software development in chemistry; Jochum C., Ed.; Gesellschaft Deutscher Chemiker: Frankfurt am Main, Vol. 8, p. 129-134 (1994). EDAS 2.0 - Software for the detection of spectra-structure relationships in infrared and mass spectra.

 

(148)  Whipple F. L.: Planet. Space Sci., 47, 301-304 (1999). Note on the structure of comet nuclei.

 

(149)  Whipple F. L.: Planet. Space Sci., 48, 1011-1019 (2000). Oort-cloud and Kuiper-belt comets.

 

(150)  White F. A., Wood G. M.: In Mass spectrometry. Applications in science and engineering; John Wiley & Sons: New York

Chichesterp. 323-334 (1986). Comets.

 

(151)  Wiley W. C., Mc Laren I. H.:, 32, 4-11 (1997). Time-of-flight mass spectrometer with improved resolution. Reprint from Scientific Instruments, 26, 1150-1157 (1955).

 

(152)  Wold S.: In Computer applications in chemical research and education; Brandt J., Ugi I. K., Eds.; Hüthig Verlag: Heidelbergp. 101-128 (1989). Multivariate data analysis: Converting chemical data tables to plots.

 

(153)  Wollnik H.: Optics of charged particles; Academic Press: Orlando (1987).

 

(154)  Wollnik H.: J. Mass Spectrom., 34, 991-1006 (1999). Ion optics in mass spectrometers.

 

(155)  Wouterloot J. G. A., Lingmann A., Miller M., Vowinkel B., Winnewisser G., Wyrowki F.: Planet. Space Sci., 46, 579-584 (1998). HCN, CO, CS, CN and CO+ observations of comet Hyakutake (1996 B2).

 

(156)  Xhoffer C., Bernard P., Van Grieken R.: Environ. Sci. Technol., 25, 1470-1478 (1991). Chemical characterization and source apportionment of individual aerosol particles over the North Sea and the English Channel using multivariate techniques.

 

(157)  Zenker A., Pittenauer E., Pfanzagl B., Löffelhardt W., Allmaier G.: Rapid. Comm. Mass Spectrom., 10, 1956-1960 (1996). Characterization of peptidoglycan trimers after gel chromatography and reversed-phase high-performance liquid chromatography by positive-ion plasma desorption mass spectrometry.

 

(158)  Zheng P., Harrington P. B., Craig A., Fleming R.: Anal. Chim. Acta, 310, 485-492 (1995). Variable alignment of high resolution data by cluster analysis.

 

(159)  Zubarev R. A., Abeywarna U. K., Demirev P., Eriksson J., Papaleo R., Hakansson P., Sundqvist B. U. R.: Rapid. Comm. Mass Spectrom., 11, 963-972 (1997). Delayed, gas-phase ion formation in plasma desorption mass spectrometry.

 

(160)  Zupan J., Gasteiger J.: Neural networks in chemistry and drug design; 2 ed.; VCH: Weinheim (1999).

 

 

Start

COSIMA

Top

[ Aims | People | Results | Presentations | Pictures | ROSETTA | COSIMA Instrument | Comet Wirtanen | Literature ]

Info

Last update 2000-12-04