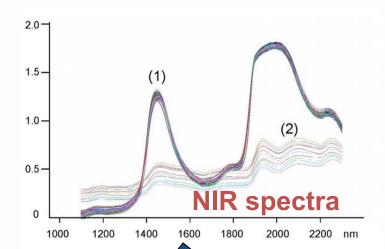
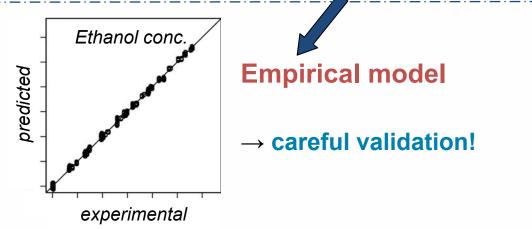


Applicability of near-infrared (NIR) spectroscopy for process monitoring in bioethanol production

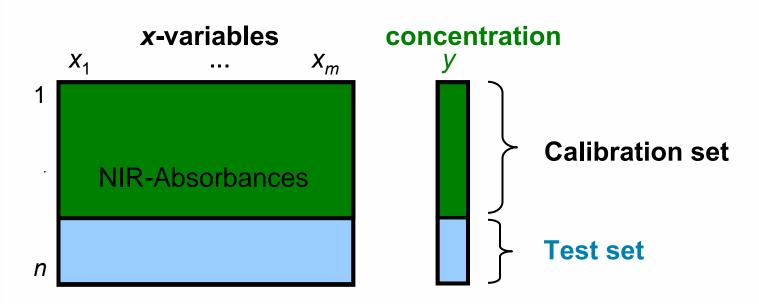
Bettina Liebmann
Institute of Chemical Engineering, TU Vienna


Overview

Bioethanol Production:



NIR spectroscopy:



Chemometrics:

Analysis of data from NIR spectroscopy

- → Create linear PLS model from calibration data: y = f(x) $y = b_0 + b_1 x_1 + ... + b_m x_m$
- → **Optimize** PLS model's **complexity** within calibration data (CV)
- \rightarrow Validate PLS model with test data: $\hat{y}_{TEST} = f(x)$

We want small errors $(\hat{y}_{TEST} - y)$

Repeated double cross validation (rdCV)

... Consists of 3 nested loops

Repetition loop

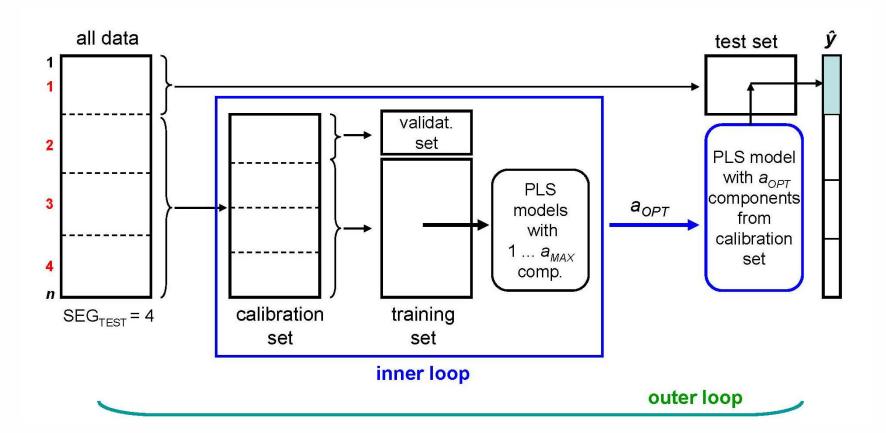
with different random sequences of the samples

Outer CV loop

Split data into calibration sets and test sets

Create model from calibration set

Estimate \hat{y} prediction errors for **test** set


Inner CV loop

Estimate optimum model complexity, that is,

Estimate of the optimum number of PLS-components

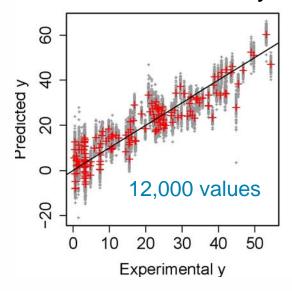
Outer / inner loop of rdCV, schematically

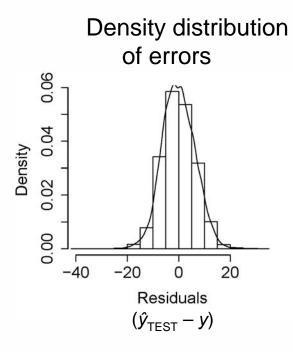
Filzmoser, Liebmann, Varmuza:

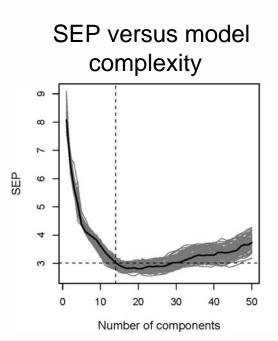
Repeated Double Cross Validation.

Journal of Chemometrics, 23 (2009) 160-171

SOFTWARE for R: www.r-project.org (free) Package ,chemometrics' (Filzmoser et al.) rdCV as function ,mvr_dcv'

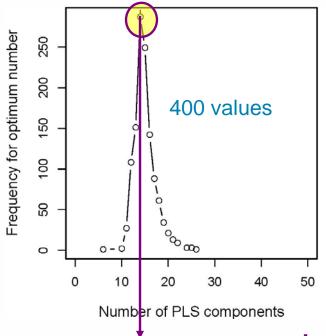

Repeated double cross validation (rdCV)

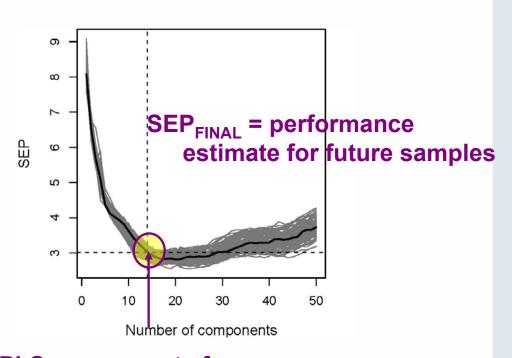

... for n = 120 samples, rdCV results in ...


Repetition loop with $n_{RFP} = 100$ repetitions

 $n * n_{REP} = 120 * 100 = 12,000$ predicted values \hat{y} from test set samples

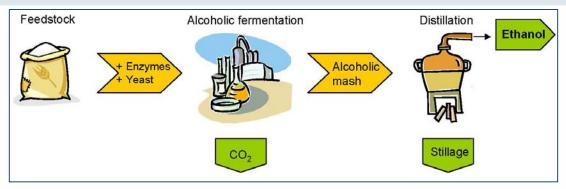
Predicted vs. experimental concentration *y*




Repeated double cross validation (rdCV)

... for n = 120 samples, rdCV results in ...

Outer CV loop with $SEG_{TEST} = 4$ segments


 n_{REP} * SEG_{TEST} = 100 * 4 = 400 values for ,optimum complexity' (= number of PLS components)

 a_{FINAL} = number of PLS components for very final regression model from all data

Selected results

rdCV+GA	95 % error interval g/l	R²	concentration range in g/l
Mash			
Glucose	± 9.0	0.900	0-54
Ethanol	± 2.4	0.997	22-88
Glycerol	± 1.0	0.988	2-17
Stillage			
Glucose	\pm 3.4	0.949	0-24
Ethanol	± 1.6	0.998	0-58
Glycerol	± 1.2	0.941	3-14
Acetic Acid	± 0.4	0.461	0-1
Lactic Acid	± 0.2	0.812	0-1
Fructose	± 1.0	0.909	0-6
Maltose	$\pm~0.8$	0.938	0-6
Arabinose	± 0.2	0.938	0-1

Liebmann, Friedl, Varmuza: *Analytica Chimica Acta*, 642 (2009), 171-178 Liebmann, Friedl, Varmuza: *Biochemical Engineering Journal*, in prep.

Conclusions

- NIR spectroscopy was successfully applied:
 - Incoming grain analysis
 - Fermentation monitoring
 - Analysis of distillation residue
- Process implementation of NIR allows:
 - Fast analytical results, minimum sample presentation
 - Quantification in multi-constituent solutions
 - Determination of concentrations >> 1g/l
- Multivariate data analysis:
 - Validate NIR models thoroughly (rdCV)
 - Good' reference values necessary
 - Incorporate sufficiently different calibration samples