Demo Example for Use of Software MassFeatGen

K. Varmuza, Vienna, Austria

From section 6 of User Guide, www.lcm.tuwien.ac.at (software)

A set of 10 mass spectra is used and 8 spectral features will be calculated. The spectra selected for this example and the features generated do not claim any spectroscopic relevance but are solely chosen for simplicity in a demo example.

Mass spectra used

No	Compound	Brutto formula	Mol.weigth	Class
1	Hexane	C6 H14	86	1
2	Hexane, 2,3-dimethyl	C8 H18	114	1
3	1-Heptene	C7 H14	98	2
4	Cyclopropane, pentyl-	C8 H16	112	2
5	4-Octanone	C8 H16 O	128	3
6	4-Octanone, 7-methyl-	C9 H18 O	142	3
7	Chlorobenzene	C6 H5 Cl	112	4
8	Phenol, 4-chloro-3-methyl-	C7 H7 O Cl	142	4
9	Butylbenzene	C10 H14	134	5
10	Benzene, 3-butenyl-	C10 H12	132	5

The data set contains five substance classes, each with two spectra: class 1 contains alkanes, class 2 hydrocarbons with one double bond equivalent, class 3 aliphatic ketones, class 4 aromatic chloro compounds, and class 5 benzyl compounds.

Feature computed

- 1 Square root of intensity at m/z 91
- 2 Feature "DUST" (relative peak intensities up to m/z 78)
- 3 Feature "IBAS" (base peak intensity in % of total intensity sum)
- 4 Feature "EVEN" (relative peak intensities at even mass numbers)
- 5 Logarithmic intensity ratio of intensities at m/z 91 and m/z 92
- 6 Intensities of peaks from ions C_nH_{2n+1}
- 7 Intensities of peaks from ions C_nH_{2n-1}
- 8 Measure for isotope peak pattern of one chlorine atom

Feature 1	2	3	4	5	6	7	8
0.00000	97.32912	17.57160	24.35424	0.00000	70.37371	40.82412	99.85750
3.16228	98.48934	26.97599	25.86998	0.00000	69.66106	36.87509	99.76339
3.16228	96.46806	15.35627	36.48649	0.00000	35.34522	76.36592	99.99683
0.00000	86.14200	17.10864	47.08298	0.00000	46.26309	77.42817	99.17346
0.00000	84.50660	15.54002	20.31080	0.00000	93.03446	40.42821	99.80399
0.00000	87.21874	23.19647	22.59337	0.00000	70.61784	33.63502	99.96016
0.00000	49.67499	34.21143	58.80944	0.00000	5.56341	3.16228	99.99991
0.00000	45.30410	21.49151	37.56716	0.00000	7.96817	5.05525	99.97254
100.00000	28.23735	34.90401	34.20593	13.10063	7.81527	11.25892	99.77883
100.00000	39.72125	34.84321	27.87456	42.69360	0.00000	8.16497	99.99683

The created feature file looks as follows

The feature file contains 10 rows (for 10 spectra) and 8 columns (for 8 features).

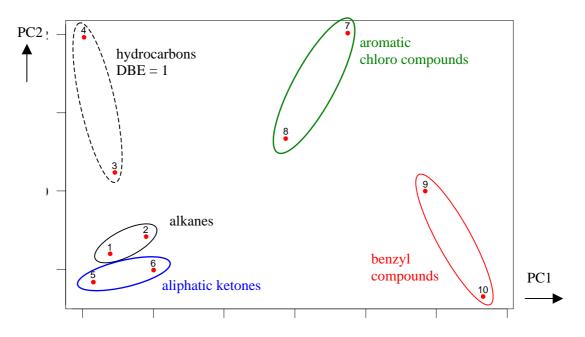
Discussion of the generated features

An over-interpretation of spectral features should be avoided - the pragmatic way to test them for desired applications is recommended. Only a short discussion of some of the generated features is tried here.

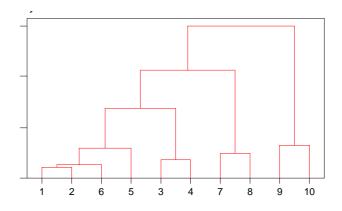
Feature 1 is the scaled intensity at mass 91; as expected it is high for the two benzyl compounds and low for the others.

Features 2 (DUST), 3 (IBAS), and 4 (EVEN) do not show evident information about the used substance classes.

Feature 5 is based on the logarithmic intensity ratio I(91)/I(92); as expected it is high for the two benzyl compounds and low for the others.


Feature 6 reflects the presence of C_nH_{2n+1} ions; highest values appear with alkanes and aliphatic ketones. Feature 7 reflects the presence of C_nH_{2n-1} ions; highest values appear with alkenes.

Feature 8 is considered to be sensitive for the isotope peak pattern of Cl_1 . However, feature values show that all 10 spectra contain a peak group similar to the chlorine isotope peaks.


Multivariate data analysis with the generated features

The features constitute a 10x8 matrix. Principal component analysis (PCA) is a widely used method in chemometrics to visualize such data. The score plot shows a tendency of forming clusters for the five substance classes (software for multivariate data analysis is not contained in MassFeatGen). Other features may give another clustering.

An alternative method to PCA in this example is hierarchical cluster analysis. A dendrogram obtained with this method shows a similar clustering as obtained by PCA.

PCA score plot of 10 mass spectra represented by 8 spectral features (autoscaled). Variances preserved by first (PC1) and second (PC2) principal component are 55.4 and 18.9 % of total variance, respectively. Each point corresponds to a compound; clustering of substance classes has been manually indicated by ellipses.

Dendrogram from hierarchical cluster analysis (Euclidean distance of original features, agglomerative and complete linkage) of 10 mass spectra represented by 8 spectral features.

More information

Kurt Varmuza Laboratory for Chemometrics c/o Institute of Chemical Engineering, Vienna University of Technology, Getreidemarkt 9/166-2, A-1060 Vienna, Austria kvarmuza@email.tuwien.ac.at, www.lcm.tuwien.ac.at Fax: +431-58801-16091, voice: +431-58801-16060