Selected Aspects of 40 Years Applied Chemometrics

VARMUZA Kurt

Vienna University of Technology, Austria

Institute of Statistics and Mathematical Methods in Economics

Laboratory for ChemoMetrics www.lcm.tuwien.ac.at

Autumn School of Chemoinformatics 25 - 26 Nov 2015, Tokyo, Japan 26 Nov 2015, The University of Tokyo

Contents of Tutorial

- **1** Basics (history, strategies)
- 2 Empirical multivariate models (optimum complexity, evaluation)
- **3** One class classification

With examples from TOF-SIMS measurements on meteorite samples and cometary dust particles (Rosetta)

Supported by Austrian Science Fund (Project P26871-N20).

Collaboration with Peter Filzmoser, Irene Hoffmann, et al., and COSIMA team acknowledged..

This is an adjusted version of the lecture for presentation in web.

Rosetta mission (ESA) to COMET 67P/Churyumov-Gerasimenko - *Chury*

COSIMA

Launch 2 March 2004 Arrival 6 Aug 2014 Landing 12 Nov 2014

12 Aug 2015, ca perihelion (186 . 10⁶ km from sun); 330 km from **comet**; OSIRIS camera; animation, 17 pictures (ca 21 hours, incl. big outburst at 17:35 GMT). http://www.esa.int/spaceinimages/Images/2015/08/Approaching_perihelion_Animation

Where are Rosetta and the comet ? http://www.esa.int/Our_Activities/Space_Science/Rosetta 26 Nov 2015

... most **pristine** material in our solar system in the form of ice, mixed with dust, **silicates**, and **refractory organic** material (probably many different species) ...

... aggregate of **pre-solar grains** (grains that existed prior to the formation of the Solar System), ...

... comet material (water/organic/inorganic) may have been **the seed of life on earth ...**

Goesmann F. et al.: Science <u>349</u>, issue 6247 (2015)
 Greenberg J. M. et al.: Space Sci. Rev., <u>90</u>, 149 (1999)
 Kissel J. et al.: Space Sci. Rev., <u>128</u>, 823 (2007)

Contents of Tutorial

1 Basics (history, strategies)

- 2 Empirical multivariate models (optimum complexity, evaluation)
- **3** One class classification

With examples from TOF-SIMS measurements on meteorite samples and cometary dust particles (Rosetta)

Chemometrics

- Uses methods from statistics, mathematics, and informatics,
- to extract relevant information from chemical/physical data,
- and to select or optimize chemical processes and experiments.

Perhaps a part of ChemoInformatics

Mostly using multivariate data

Bruce Kowalski (1942 - 2012) Loen, 2011

Typical: collinear variables, and often m > n

- Multivariate calibration
- Multivariate classification

... data-driven ...

... empirical models !

Some aspects for empirical models (in chemometrics)

- □ More variables than objects (m > n)□ Multicollinearity
- Multicollinearity
- **Parsimonious** (interpretation, understanding)
- **Tested** (for new cases, domain, performance)
- **Robust** (data distribution, outliers)

Trial and error ...

Contents of Tutorial

- **1 Basics (history, strategies)**
- 2 Empirical multivariate models (optimum complexity, evaluation)
- **3** One class classification

With examples from TOF-SIMS measurements on meteorite samples and cometary dust particles (Rosetta)

Optimization and Evaluation (separated)

Estimation of model performance: CALIBRATION

- reference ("true") value for object *i*
- calculated (predicted) value (test set !)
 - prediction error for object (residual)
 - z is the number of predictions
 - Specify: reference which data set (calibration set, test set)

which strategy (cross validation, ...)

Distribution of prediction errors

Y_i

Ŷi

 $\mathbf{e}_i = \mathbf{y}_i - \hat{\mathbf{y}}_i$

i = 1 ... z

- bias = mean of prediction errors e_i
- SEP = standard deviation of prediction errors e_i
 - = Standard Error of Prediction

CI = confidence interval, $CI_{95\%} \approx \pm 2^*SEP$

User friendly ! All in units of y !

Estimation of model performance

SEP (or any other performance criterion) must NOT be considered as a single number.

Depends on

■ the used objects, and variables;

the random split in a CV (or a bootstrap); repetitions highly recommended, e. g., rdCV.

It is an estimation.

It has a distribution (variation) - boxplots recommended.

Estimation of model performance: CALIBRATION

X n = 166 fermentation samples (cereals), centrifuged m = 235 NIR absorbances, 1115 - 2285 nm (step 5 nm), 1st deriv., (7 points, 2nd order)
 Y ethanol content, reference method HPLC; 21.7 - 88.1 g/L

Liebmann B., Friedl A., Varmuza K.: Anal. Chim. Acta 642 (2009) 171.

Varmuza K., Filzmoser P.: In Khanmohammadi M. (ed.), *Current Applications of Chemometrics*, Nova Science Publishers, New York, USA (2015), p. 15.

Estimation of model performance: CLASSIFICATION

Class assignment table (binary classification)	assigned 1	class	sum		
true class 1	n ₁₁	n ₁₂	n ₁		
true class 2	n ₂₁	n ₂₂	n ₂		
sum	<i>n</i> →1	<i>n</i> →2	n		
Predictive ability class 1 $P_1 = n_{11}/n_1$ class 2 $P_2 = n_{22}/n_2$					
Average predictive	ability	$P = (P_1 -$	⊦ P ₂)/2		

Avoid: Overall predictive ability = $(n_{11} + n_{22})/n$

Extraterrestrial Material

- Collected in space and brought safely to Earth (Stardust [near comet], Hayabusa [asteroid surface])
 - Measurements in space (Rosetta, Mars, Moon, ...)
- Coming autonomously (meteorites, ca 40,000 t/year) Finds and Falls (witnessed, observed, samples)

Samples from Natural History Museum (NHM) Vienna: 10 meteorites

Estimation of model performance: CLASSIFICATION Classification of meteorites by TOF-SIMS

Samples from Natural History Museum (NHM) Vienna: 10 meteorites

Estimation of model performance: CLASSIFICATION Classification of meteorites by TOF-SIMS

KNN classification,

Euclidean distance, **rdCV** strategy (20 repetitions, 2 and 5 segments), optimum no. of neighbors = 1

Predictive abilities

(mean of 20 repetitions) per meteorite class: 90 – 97 %

Total mean: 94 %

Al La Mo Mu Oc Pu Re Su Ta Tie Tis

Assigned class

Estimation of model performance: CLASSIFICATION

Classification of meteorites by TOF-SIMS

Estimation of model performance: CLASSIFICATION

Classification of meteorites by TOF-SIMS

Contents of Tutorial

- **1 Basics (history, strategies)**
- 2 Empirical multivariate models (optimum complexity, evaluation)
- **3** One class classification

With examples from TOF-SIMS measurements on meteorite samples and cometary dust particles (Rosetta)

TOF-SIMS on Meteorite Grains

Meteorite grains prepared on a gold foil (10 mm x 10 mm)

Samples

Christian Köberl, Franz Brandstätter, Ludovic Ferrière, **Natural History Museum Vienna**

Preparation Cécile Engrand, Univ. Paris Sud (Orsay)

TOF-SIMS (COSIMA twin) Martin Hilchenbach, Max Planck Institute for Solar System Research, Göttingen

Tissint

TOF-SIMS on Meteorite Grains

Photographic picture of a target with a meteorite grain.

TOF-SIMS measuring positions (155 query spectra)

63 background (Off grain) spectra

Multi-class classification

Binary classification

One-class classification

Only one *target* class, all others (outlier)

Multi-class classification

Binary classification

SIMCA (S. Wold): PCA model of each class

One-class classification

Only one *target* class, all others (outlier)

Recognition of potentially relevant spectra (TOF-SIMS)

- Univariate; intensity of a selected ion (element, e.g., Fe, ...)
- Ratios of variables (or other ,simple' heuristic combinations)

 One-class classification (<i>target</i> class = off-grain PCA: orthogonal and score distance KNN distance distribution 	n) [supervised]
Weights from sparse and robust PLS-DA	[supervised]
- Cluster analysis	[unsupervised]
- Deconvolution	
- NMF (nonnegative matrix factorization)	[unsupervised]

Distances to PCA model made from Off-grain spectra

Demo scheme

Target class: X_0 , m = 3 variables;

PCA model with A = 2 components (scores t_1 and t_2);

- Projection of X₀-points into the PCA model (plane, defined by t₁ and t₂)
- **O** Query points 1, 2, 3 in x-space
- Projections of query points into the PCA plane

- □ Xu Y., Brereton R.: J. Chem. Inf. Model., 45, 1392 (2005)
- Demonstrate A.L.: J. Chemom., 22, 601 (2008)
- Varmuza K., Filzmoser P.: Introduction to multivariate statistical analysis in chemometrics, CRC Press, Boca Raton, FL, USA (2009)

Distances to PCA model made from Off-grain spectra

Demo scheme

Target class: X_0 , m = 3 variables;

PCA model with A = 2 components (scores t_1 and t_2);

- Projection of X₀-points into the PCA model (plane, defined by t₁ and t₂)
- O Query points 1, 2, 3 in x-space
- Projections of query points into the PCA plane

Score distance (SD)

= *Mahalanobis* distance from center, measured in the PCA space (plane).

Describes the distance to the center (of the background spectra) in PCA score space, considering the covariance structure of the x-variables.

- □ Xu Y., Brereton R.: J. Chem. Inf. Model., 45, 1392 (2005)
- Demonstrate A.L.: J. Chemom., 22, 601 (2008)
- Varmuza K., Filzmoser P.: Introduction to multivariate statistical analysis in chemometrics, CRC Press, Boca Raton, FL, USA (2009)

Distances to PCA model made from Off-grain spectra

Demo scheme

Target class: X_0 , m = 3 variables;

PCA model with A = 2 components (scores t_1 and t_2);

- Projection of X₀-points into the PCA model (plane, defined by t₁ and t₂)
- O Query points 1, 2, 3 in x-space
- Projections of query points into the PCA plane

Orthogonal distance (OD)

= Distance in x-space between point and its projection onto the PCA space.

Describes information loss by projecting into the A-dimensional PCA score space.

- □ Xu Y., Brereton R.: J. Chem. Inf. Model., 45, 1392 (2005)
- Demonstrate A.L.: J. Chemom., 22, 601 (2008)
- Varmuza K., Filzmoser P.: Introduction to multivariate statistical analysis in chemometrics, CRC Press, Boca Raton, FL, USA (2009)

Distances to PCA model made from Off-grain spectra

Demo scheme

Target class: X_0 , m = 3 variables;

PCA model with A = 2 components (scores t_1 and t_2);

- Projection of X₀-points into the PCA model (plane, defined by t₁ and t₂)
- **O** Query points 1, 2, 3 in x-space
- Projections of query points into the PCA plane

Large OD - AND/OR large SD - indicate an *outlier*; a spectrum not belonging to the background group, a potentially relevant spectrum.

- □ Xu Y., Brereton R.: J. Chem. Inf. Model., **45**, 1392 (2005)
- Demonstrate A.L.: J. Chemom., 22, 601 (2008)

Varmuza K., Filzmoser P.: Introduction to multivariate statistical analysis in chemometrics, CRC Press, Boca Raton, FL, USA (2009)

Mean KNN distances within the Off-grain spectra

- (1) mean distance to k nearest neighbors of object *i*
- (2) For all objects of *target* class, $i = 1 \dots n$
- (3) Distribution of the mean distances
- (4) **Cutoff value** (quantile 0.99)

COSIMA: Au target with collected comet particles (grains)

[Yves Langevin (Paris, Orsay)]

4 x 3 TOF-SIMS spectra scanned (7 Sep 2014, 12:14 - 13:22)

OD (Orthogonal Distance), KNN mean distance

Particle DONIA, Aug 2014

KNN (k = 10)

Off-grain (*target* class), *n*1 = 59; **Query spectra**, *n*2 = 96 (plot); *m* = 3437 variables (inorganic ions, sum 100)

COSIMA: TOF-SIMS Mass Spectra of Comet Particles

Rosetta: Mass Spectra of Gas Phase

GC-MS instrument ROSINA (Orbiter)

 N_2, O_2 H_2O CO, CO_2, CH_4 CH_3OH, CH_2O NH_3, HCN H_2S, CS_2, SO_2

Balsiger H. et al.: Space Sci. Rev. 128, 745-801 (2007). ROSINA - Rosetta Orbiter Spectrometer for Ion and Neutral Analysis. $m/\Delta m$ 9000 (50% peak height); m/z 12-150; double-focusing magnet ms.

Rosetta: Mass Spectra of Gas Phase

GC-MS instrument COSAC (Philae Lander)

Goessmann F. et al.: Science, 349, issue 6247 (2015); MPS Göttingen

Rosetta: Mass Spectra of Gas Phase

GC-MS instrument COSAC (Philae Lander)

	Table 1. The 16 molecules used to fit the	COSAC mass spec	trum.		
20	4				
15	Name	Formula	Molar mass (u)	MS fraction	Relative to water
-	Water	H ₂ O	18	80.92	100
o nuts	Methane	CH ₄	16	0.70	0.5
	Methanenitrile (hydrogen cyanide)	HCN	27	1.06	0.9
3	Carbon monoxide	CO	28	1.09	1.2
91 isomers (MOLGEN)	Methylamine	CH ₃ NH ₂	31	1.19	0.6
	Ethanenitrile (acetonitrile)	CH ₃ CN	<mark>4</mark> 1	0.55	0.3
	Isocyanic acid	HNCO	43	0.47	0.3
	Ethanal (acetaldehyde)	CH₃CHO	44	1.01	0.5
201 ian	Methanamide (formamide)	HCONH ₂	45	3.73	1.8
201 ion	Ethylamine	C ₂ H ₅ NH ₂	<mark>45</mark>	0.72	0.3
formulae	Isocyanomethane (methyl isocyanate)	CH ₃ NCO	57	3.13	1.3
$C_{c}H_{h}N_{n}O_{0}$	Propanone (acetone)	CH ₃ COCH ₃	58	1.02	0.3
(m/z 1 – 62).	Propanal (propionaldehyde)	C ₂ H ₅ CHO	58	0.44	0.1
, notontial	Ethanamide (acetamide)	CH ₃ CONH ₂	59	2.20	0.7
	2-Hydroxyethanal (glycolaldehyde)	CH ₂ OHCHO	60	0.98	0.4
tragment ions	1,2-Ethanediol (ethylene glycol)	CH ₂ (OH)CH ₂ (OH)	62	0.79	0.2

Goessmann F. et al.: Science, 349, issue 6247 (2015); MPS Göttingen

?

Organics in Extraterrestrial Material

Fall 28 Sep 1969 Carbon-rich chondrite, total ca 100 kg, considered to be similar to comet material

High molecular diversity of extraterrestrial organic matter in <u>Murchison</u> meteorite revealed 40 years after its fall

30 mg freshly broken meteorite sample

extraction by methanol, acetonitril, toluene, ...

Fourier transform ion cyclotron resonance mass spectrometer (FTICR-MS); electrospray ionization (ESI), only quasi molecular ions (M+H)⁺, (M-H)⁻ *m*/∆*m* ca 10⁶

Peak list mass spectra

Suitable for highly complex organic mixtures (one peak per brutto formula)

Schmitt-Kopplin P. et al. (Helmholtz-Zentrum, Munich): PNAS 107, 2763 (2010)

Organics in Extraterrestrial Material

Schmitt-Kopplin P. et al. (Helmholtz-Zentrum, Munich): PNAS 107, 2763 (2010)

Selected Aspects of 40 Years Applied Chemometrics

Everything should be made **as simple as possible**, but not simpler.

Data in chemistry, ...

Sometimes CHEMOMETRICS helps, but not always.

Thank you for your interest

Autumn School of Chemoinformatics 25 - 26 Nov 2015, Tokyo, Japan 26 Nov 2015, The University of Tokyo

