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1. Introduction 

In year 1975 the American chemist and mathematician Bruce R. Kowalski published a first 

overview about a chemical discipline called chemometrics (Kowalski 1995). The name itself 

has been suggested 1972 and 1974 by the Swedish chemist Svante Wold (Wold 1972, 1974). A 

commonly accepted definition of chemometrics is "Chemometrics is a chemical discipline that 

uses statistical and mathematical methods to design or select optimum procedures and experi-

ments, and to provide maximum chemical information by analyzing chemical data." This defi-

nition is very broad, however, the essential part of chemometrics is still the application of mul-

tivariate data analysis. The latter is an important area in statistics, and actually, during the last 

decades, statistics and chemometrics experienced mutual benefit, although not without frictions. 

The areas of QSP(A)R - quantitative structure-property (activity) relationships and interpreta-

tion of molecular spectra (systematic elucidation of chemical structures) are bridges to chemo- 

and bio-informatics. Chemometrics provides formal methods and the software tools for trans-

forming chemistry-related data into useful, non-trivial predictions. 

Chemometric methods are now routinely used in various fields of analytical chemistry and 

chemical technology, however, the easy and routine use of (commercial) software packages 

sometimes hide the necessity of an - at least basic - understanding of the applied methods and 

their limits. Especially, a critical evaluation of empirical multivariate models is essential, be-

cause such models are typically not based on theory (first principles) but are data driven and 

based on assumptions about useful relationships between the data. Considering the parsimoni-

ous principle "make models as simple as possible, but not too simple", is important.  

Good sources for the traditional chemometric methods are still the blue books by Massart and 

co-authors (Massart et al. 1988, 1997, Vandeginste et al. 1998). A subjective selection of more 

recent introductory overview books comprises (Brereton 2006, 2007, 2009), (Mark et. al. 2007), 

(Otto 2007). The books (Varmuza et al. 2009) and (Wehrens 2011) include codes for the free 

programming environment R, nowadays often used beside traditional Matlab. For method de-

velopment the book (Hastie et al. 2008) is a substantial reference to relevant statistics. 

In this tutorial a few selected topics of chemometrics are discussed: robust multivariate methods 

(focus of this abstract), linear latent variables (including random projection), and evaluation of 

regression and classification models. Some examples use mass spectral data measured on mete-

orite samples and on comet particles (near a comet, by COSIMA/Rosetta); (ESA 2015, Kissel et 

al. 2007, Schulz et al. 2015, Varmuza et al. 2015). 
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2. Overview of robust methods in chemometrics 

For details see textbooks on statistics; R codes are, e. g., contained in (Varmuza et al. 2009). 

2.1. Chemometrics often deals with experimental data which may contain outliers and may not 

have a requested distribution. Robust statistical methods are less influenced by outliers or, e. g., 

by deviations from a normal distribution. They use other criteria (estimators) than classical 

methods (e. g., the median instead of the arithmetic mean), or give the observations weights de-

pending on their outlying behavior (e. g., in robust regression) - however, avoid a 

yes/no-elimination of potential outliers. Trimmed estimators (e. g., as performance measures for 

a classification model) exclude extreme values (e. g., considering only the 5% to 95% range). 

2.2. Basic descriptive measures for a set of n numbers (x1, x2, ..., xn) characterize their central 

value and their spread. The classical estimators arithmetic mean (mean) and standard deviation 

(s) are sensitive to outliers. Simple robust counterparts are the median (med) and the interquar-

tile range (IQR). In the case of a normal distribution, sIQR = 0.7413 IQR provides a robust esti-

mation of s. An alternative to IQR is the median absolute deviation (MAD), defined as the me-

dian of the absolute differences |med - xi|; another robust estimation of s is sMAD = 1.483 MAD. 

The median and the robust measures of the data spread can be advantageously used in further 

data evaluations or transformations (e. g., for the often applied autoscaling). 

2.3. Classical measures for characterizing a linear relationship between two variables (meas-

urements) xj and xk are the (Pearson) correlation coefficient, rjk (range -1 to +1), and the covari-

ance cjk, with rjk = cjk /(sj sk). Robust correlation measures are the Spearman rank correlation and 

the Kendall's tau correlation (both with ranges -1 to +1). For the covariance matrix (a basic ob-

ject in multivariate data analysis) several approaches have been suggested for a robust estima-

tion; however, most require more objects than variables, which is rarely fulfilled in chemis-

try-related data; for a summary see (Varmuza et al. 2009, page 43 f.). 

2.4. In multivariate data analysis, the distance between objects in the variable space is consid-

ered as a measure of the similarity of the objects, and widely used methods are based on this 

concept (e. g., PCA, principal component analysis). The mostly used Euclidean distance (and 

also the Mahalanobis distance) are highly influenced by outliers. The latter is used for outlier 

recognition; in this case a robust estimation of the data center and the covariance matrix (neces-

sary for the Mahalanobis distance) are essential. 

2.5. Linear latent variables are the basic concept of the most used multivariate data analysis 

methods in chemometrics, such as PCA, PLS (partial least-squares regression), and LDA (linear 

discriminant analysis, including PLS discriminant analysis, PLS-DA). A linear latent variable 

(component, factor) is a linear combination of all (or selected) variables. The parameters (load-

ings, regression coefficients) of the linear combination are controlled by the aim of data analysis 

or modeling: (a) maximum variance of the scores (the values of the component) for PCA, (b) 

maximum covariance (or correlation coefficient) between the scores and a given y-property of 

the objects (samples) for PLS (or OLS, ordinary least-squares regression); (c) scores with 

maximum discrimination between two object classes (LDA, PLS-DA).  
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