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1. Introduction

In year 1975 the American chemist and mathematician Bruce R. Kowalski published a first
overview about a chemical discipline called chemometrics (Kowalski 1995). The name itself
has been suggested 1972 and 1974 by the Swedish chemist Svante Wold (Wold 1972, 1974). A
commonly accepted definition of chemometrics is "Chemometrics is a chemical discipline that
uses statistical and mathematical methods to design or select optimum procedures and experi-
ments, and to provide maximum chemical information by analyzing chemical data.” This defi-
nition is very broad, however, the essential part of chemometrics is still the application of mul-
tivariate data analysis. The latter is an important area in statistics, and actually, during the last
decades, statistics and chemometrics experienced mutual benefit, although not without frictions.
The areas of QSP(A)R - quantitative structure-property (activity) relationships and interpreta-
tion of molecular spectra (systematic elucidation of chemical structures) are bridges to chemo-
and bio-informatics. Chemometrics provides formal methods and the software tools for trans-
forming chemistry-related data into useful, non-trivial predictions.

Chemometric methods are now routinely used in various fields of analytical chemistry and
chemical technology, however, the easy and routine use of (commercial) software packages
sometimes hide the necessity of an - at least basic - understanding of the applied methods and
their limits. Especially, a critical evaluation of empirical multivariate models is essential, be-
cause such models are typically not based on theory (first principles) but are data driven and
based on assumptions about useful relationships between the data. Considering the parsimoni-
ous principle "make models as simple as possible, but not too simple”, is important.

Good sources for the traditional chemometric methods are still the blue books by Massart and
co-authors (Massart et al. 1988, 1997, Vandeginste et al. 1998). A subjective selection of more
recent introductory overview books comprises (Brereton 2006, 2007, 2009), (Mark et. al. 2007),
(Otto 2007). The books (Varmuza et al. 2009) and (Wehrens 2011) include codes for the free
programming environment R, nowadays often used beside traditional Matlab. For method de-
velopment the book (Hastie et al. 2008) is a substantial reference to relevant statistics.

In this tutorial a few selected topics of chemometrics are discussed: robust multivariate methods
(focus of this abstract), linear latent variables (including random projection), and evaluation of
regression and classification models. Some examples use mass spectral data measured on mete-
orite samples and on comet particles (near a comet, by COSIMA/Rosetta); (ESA 2015, Kissel et
al. 2007, Schulz et al. 2015, Varmuza et al. 2015).



2. Overview of robust methods in chemometrics

For details see textbooks on statistics; R codes are, e. g., contained in (Varmuza et al. 2009).

2.1. Chemometrics often deals with experimental data which may contain outliers and may not
have a requested distribution. Robust statistical methods are less influenced by outliers or, e. g.,
by deviations from a normal distribution. They use other criteria (estimators) than classical
methods (e. g., the median instead of the arithmetic mean), or give the observations weights de-
pending on their outlying behavior (e. g., in robust regression) - however, avoid a
yes/no-elimination of potential outliers. Trimmed estimators (e. g., as performance measures for
a classification model) exclude extreme values (e. g., considering only the 5% to 95% range).

2.2. Basic descriptive measures for a set of n numbers (X;, X2, ..., X,) characterize their central
value and their spread. The classical estimators arithmetic mean (mean) and standard deviation
(s) are sensitive to outliers. Simple robust counterparts are the median (med) and the interquar-
tile range (IQR). In the case of a normal distribution, sior = 0.7413 IQR provides a robust esti-
mation of s. An alternative to IQR is the median absolute deviation (MAD), defined as the me-
dian of the absolute differences |med - x;j|; another robust estimation of s is syap = 1.483 MAD.
The median and the robust measures of the data spread can be advantageously used in further
data evaluations or transformations (e. g., for the often applied autoscaling).

2.3. Classical measures for characterizing a linear relationship between two variables (meas-
urements) x; and x are the (Pearson) correlation coefficient, ry (range -1 to +1), and the covari-
ance Cj, with rjc = cj /(s sk). Robust correlation measures are the Spearman rank correlation and
the Kendall's tau correlation (both with ranges -1 to +1). For the covariance matrix (a basic ob-
ject in multivariate data analysis) several approaches have been suggested for a robust estima-
tion; however, most require more objects than variables, which is rarely fulfilled in chemis-
try-related data; for a summary see (Varmuza et al. 2009, page 43 f.).

2.4. In multivariate data analysis, the distance between objects in the variable space is consid-
ered as a measure of the similarity of the objects, and widely used methods are based on this
concept (e. g., PCA, principal component analysis). The mostly used Euclidean distance (and
also the Mahalanobis distance) are highly influenced by outliers. The latter is used for outlier
recognition; in this case a robust estimation of the data center and the covariance matrix (neces-
sary for the Mahalanobis distance) are essential.

2.5. Linear latent variables are the basic concept of the most used multivariate data analysis
methods in chemometrics, such as PCA, PLS (partial least-squares regression), and LDA (linear
discriminant analysis, including PLS discriminant analysis, PLS-DA). A linear latent variable
(component, factor) is a linear combination of all (or selected) variables. The parameters (load-
ings, regression coefficients) of the linear combination are controlled by the aim of data analysis
or modeling: (a) maximum variance of the scores (the values of the component) for PCA, (b)
maximum covariance (or correlation coefficient) between the scores and a given y-property of
the objects (samples) for PLS (or OLS, ordinary least-squares regression); (c) scores with
maximum discrimination between two object classes (LDA, PLS-DA).



2.6. PCA calculates latent variables with maximum variance and is therefore sensitive to outli-
ers. Robust versions of PCA use instead of the classical variance (s%) a robust estimation (e. g.,
via MAD) for searching the principal components (projection pursuit). Another approach esti-
mates a robust covariance matrix, followed by a classical PCA, e. g. by eigenvector computa-
tion of this matrix.

2.7. For multiple linear regression (MLR), a robust objective function can be used instead of the
classical non robust sum of squared residuals, e. g. the M-estimate (Maronna et al. 2006). Ro-
bust principal component regression (PCR) combines a robust PCA with a robust MLR. Robust
versions of the most used regression method in chemometrics, PLS, can be realized by using a
robust measure for the covariance (for searching the PLS compaonents), or by down weighting
large absolute residuals (partial robust M-regression, PRM-PLS), (Serneels et al. 2005).

2.8. Robust methods in multivariate classification gain high attention in machine learning but
have found only little notice in chemometrics up to now. Because classical PLS-DA is widely
used by chemists, robust versions may be a first step to robustification, as shown below.

3. Example

The COSIMA instrument (Kissel et al. 2007) onboard of Rosetta collects dust particles (emitted
from a comet) on metal targets of size 1 cm x 1 cm; typical diameter of these grains is 20 - 500
um (Schulz et al. 2015). The primary ion spot of the TOF-SIMS instrument has a diameter of ca
70 um, and a position accuracy (x-, and y-coordinates) of ca 80 um. Consequently, some spectra
are accidentally measured “On grain” and some “Off grain”. A primary task in data evaluation is
an automatic recognition of potentially relevant spectra (not from background). For method de-
velopment a meteorite grain has been investigated by a twin laboratory instrument; 63 spectra
are from background (group 1), 155 from grain or near grain (group 2); no. of variables is 2612.
Fig. 1 shows the classification result obtained by a robust PLS-DA, which considers the uncer-
tain assignment of the group 2 spectra by an appropriate weighting (Hoffmann et al. 2015).

Fig. 1. Classification of 155 TOF-SIMS spectra meas-
ured on and near a meteorite grain. X, y, coordinates of
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