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1. Introduction 
The chemical structure information contained in mass spectra is difficult to extract because of the 
complicated and widely unknown relationships between MS data and chemical structures. The 
fragmentation processes which result in the measured data characterize MS as a chemical 
method. Chemical effects are, in general, more difficult to describe and to predict than physical 
ones.  

The aim of spectra evaluation can be either the identification of a compound (assuming the 
spectrum is already known and available) or the interpretation of spectral data in terms of the 
unknown chemical structure (with the spectrum of the unknown usually not available) [1-3].  

Identification is performed best by library search methods based on spectra similarities; a 
number of MS databases and powerful software products are offered for this purpose and are 
routinely used [4,5]. 

The more challenging problem is the interpretation of mass spectra which still is a topic of 
research projects in chemometrics and computer chemistry. No comprehensive solutions are 
available and these methods are not used in routine work.  

Four groups of different strategies have been applied to the complex problems of substructure 
recognition or recognition of more general structural properties from spectral data.  

(1) Knowledge-based methods try to implement spectroscopic knowledge about spectra-structure 
relationships into computer programs. Because of the lack of generally applicable rules this 
approach was not successful in MS. However, spectroscopic knowledge has been extensively 
applied in other methods to guide the construction of mathematical models.  
(2) Appropriate interpretive library search techniques can be used to obtain structural 
information if the unknown is not contained in the library.  
(3) Correlation tables containing characteristic spectral data (key ions) together with 
corresponding substructures had only limited success because a specific structural property does 
not always give the same spectral signals.  
(4) Spectral classifiers are algorithms based on multivariate classification methods or neural 
networks; they are constructed for an automatic recognition of structural properties from spectral 
data. 

This paper focuses on the application of multivariate data analysis - the typical chemometric 
approach - to investigate relationships between low resolution electron impact data and chemical 
structures as well as on the development and use of MS classifiers together with automatic 
isomer generation [6]. Chemometric methods are successful to some extent in the automatic 
recognition of substructures or other structural properties from low resolution electron impact 
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mass spectra [6-15]. In some cases a systematic structure elucidation is possible from the 
molecular formula of an unknown together with restrictions about the presence or absence of 
substructures (automatically obtained from spectra). From such data an exhaustive set of possible 
chemical structures can be constructed by an appropriate isomer generator software.  

The methods of multivariate data analysis applied to spectra interpretation are all based on the 
characterization of spectra by a set of variables (spectral features). A spectrum then can be 
considered as a point in a multidimensional space with the coordinates defined by these spectral 
features. Several mathematical procedures are available to "look" into the high dimensional 
space (exploratory data analysis, cluster analysis) or to find decision rules (classifiers) capable to 
separate for instance a substance class from all other compounds.  

The application of multivariate data analysis to spectra interpretation typically consists of the 
following steps:  

(1) Generation of a set of spectra and the corresponding chemical structures (hitlist from a 
spectral similarity search or result from a database search).  
(2) Transformation of peak list data into a set of spectral features and eventually the selection of 
the most relevant features. Chemical structures have to be encoded by a set of molecular 
descriptors. 
(3) Application of methods form multivariate data analysis, such as for instance principal 
component analysis (PCA) for exploratory data analysis or multivariate classification for the 
development of spectral classifiers.  

A mathematical description of the used chemometric standard methods [16-24] is beyond the 
scope of this paper. 

 

2. Transformation of MS data into spectral features 
An appropriate mathematical transformation of the original peak list data into a set of suitable 
features is essential for a successful application of multivariate data analysis [3]. A spectral 
feature xj is a number that can be automatically computed from a mass spectrum. Usually 
nonlinear transformations are applied that sometimes consider spectroscopic knowledge. Aim of 
data transformation is to obtain a set of variables that are better suited for a structure related 
spectra interpretation than the original peak list data alone. A summary of mass spectral features 
is given in Table 1. The typical number of features used is between 10 and several hundreds. 

 

3. Exploratory data analysis 
The most prominent method for an exploratory analysis of multivariate data is principal 
component analysis (PCA). The resulting PCA scatter plots for spectra and for features often 
present spectra-structure relationships or indicate substance classes that are reflected by the used 
spectral features and the used chemometric method. The example in Figure 1 shows the 
clustering of mass spectra from aliphatic and alicyclic ketones according to the number of double 
bond equivalents (DBE). The data set used consisted of 200 randomly selected spectra from the 
NIST Mass Spectral Database [25] applying the restrictions: 50 compounds each for DBE = 1, 2, 
3, 4, 5; molecular mass 70 to 250; molecular formula CnHmO1. The mass spectra have been 
transformed into the  14 features from the modulo-14-summation type (Table 1, group 5).  
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Table 1. Summary of mass spectral features. All these features (xj) are calculated from peak intensities Im 
(% base peak intensity) and are in the range 0 to 100 [12,14,26,27]. 

Group Feature definition Ref. 

1 
 
 
2 
 
 
 
3 
 
 
 
4 
 
 
 
 
 
5 
 
 
 
 
 
 
6 
 
 
 
7 
 
 
 
 
8 
 

INTENSITIES AT SINGLE MASSES are useful for informative key fragments.  
xj   =   Im 
 
INTENSITIES AT SINGLE MASSES NORMALIZED TO LOCAL ION CURRENT. The local ion 
current is the sum of peak intensities in a mass interval + ∆m around mass m. 
xj   =   100 Im / Σ Ik  with  k  =  m - ∆m  ....  m + ∆m 
 
AVERAGED INTENSITIES OF MASS INTERVALS. This feature group reflects the 
distribution of peaks in the lower and higher mass ranges. 
xj   =   Σ Ik / (m2 - m1 + 1) with  k  =  m1  ...  m2  
 
LOGARITHMIC INTENSITY RATIOS. This feature group reflects the better reproducibility 
of intensity ratios compared with absolute intensities. The equations given avoid 
arithmetic problems with zero intensities. 
xj   =   100 (Lm + ln100) / (2 ln100)  
 with  Lm   =   ln Ik / Ik+∆m and Iz  =  max (Iz, 1) 
 
MODULO-14 SUMMATION. One of the first numerical transformations successfully 
used for mass spectra is the summation of intensities at masses differing by a multiple 
of 14. A set of 14 possible features is defined as follows. 
xj   =   100 sj / smax  
 with sj   =   Σ Il + 14k     (j, l  =   1 ... 14;  k  =  0, 1, 2, ...) 
 and  smax   =   max (s1, ...  s14) 
 
AUTOCORRELATION FEATURES reflect characteristic mass differences between peaks 
as well as periodicities in a spectrum. 
xj   =   100 Σ Im Im + ∆m / S0 with   S0  =  Σ Im Im  
 
SPECTRA TYPE FEATURES characterize the distribution of peaks across the mass range. 
xj, dust   =   100 Σ Im / Iall  with   m = 25 ... 78  and  Iall = sum of all Im 
xj, base   =   100. 100 / Iall  
xj, even   =   100 Σ I2k / Iall  with for instance  k  = 13  ...  400 
 
CHARACTERISTIC PEAK SERIES FEATURES. The joint presence of a series of N charac-
teristic masses m(k), k = 1 … N can be described by the following two features. 
xj, product   =   ( Π Am(k) )1/N   with   k = 1 ... N  and  Am(k)  =  max (Im(k), 1) 
xj, mean   =   (N*/N) ( Σ Im(k) ) / N   with   k = 1 ... N  and  N*, number of present peaks 
 

- 
 
 
[28] 
 
 
-  
 
 
 
 
[14] 
 
 
 
 
 
[29] 
 
 
 
 
 
 
[15] 
 
 
 
[14] 
 
 
 
 
[30] 
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Figure 1. PCA score plot for 200 mass spectra from aliphatic and alicyclic ketones using 14 modulo-14 
features (Table 1). The numbers denote the number of double bond equivalents. The axes are the first and 
second principal component (preserving 35.8 and 21.8 % of the total variance, respectively). 

 
 
 
 
 

4. Classification of substructures 
The two most important computer-assisted strategies for the recognition of structural information 
from mass spectral data are:  

(1) The structures in the hitlist from a spectra similarity search are used to estimate the 
probability of substructures in the unknown [31].  

(2) Random samples of mass spectra are first characterized by a set of spectral features and then 
multivariate classification methods or neural networks are applied to develop spectral classifiers. 
Only this approach will be briefly treated in this paper [6,12,27]. 

A spectral classifier is a mathematical function (or algorithm) with spectral features as input and 
one new variable - the discriminant variable - as output. Let x1, x2, … xp be the spectral features, 
and z a discriminant variable; a linear classifier is defined by  

 z  =  b1 x1  +  b2 x2  + … +  bp xp 
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For a discrimination of two mutual exclusive classes of spectra the coefficients bj can be 
determined with the aim to obtain values for z near +1 for one class and values near -1 for the 
other. The coefficients bj define a vector in the feature space which corresponds to the axis of the 
discriminant variable. Classification means to project a point (corresponding to a spectrum) onto 
this axis and thereby determining the value of z. A simple approach for class assignment uses the 
sign of z (if z > 0 then class 1, else class 2). The number of wrong classifications can be reduced 
if rejection thresholds are used, however, at the cost of not classified spectra.  

The coefficients bj are estimated from a data set containing spectra of both classes (training set); 
the resulting classifier has to be tested with spectra that have not been used for the training 
(prediction set). A widely used method for the calculation of linear classifiers is linear 
discriminant analysis (LDA) - preferably combined with a preceding PCA. The typical strategy 
for the development of spectral classifiers is shown in Figure 2.  

Today's performance of mass spectra classification by multivariate methods can be summarized 
as follows [3]:  

(1) Only a rather small number of substructures can be recognized with a low error rate.  
(2) Predictions of the absence of substructures are usually more accurate than predictions of their 
presence.  
(3) Erroneous classifications cannot be avoided completely; therefore interaction of a human 
expert and the parallel use of other spectra interpretation methods are advisable.  
(4) For small molecules a systematic and almost complete structure elucidation is sometimes 
possible by mass spectra classification and by application of the obtained structural restrictions 
in automatic isomer generation. An example is shown in the next chapter. 
(5) Classification by neural networks [7-9,14] or feature selection by genetic algorithms [32,33] 
improved the performance in some cases but did not enable a break-through. 

 

 

database with spectra and structures 

  substructure  search [34,35] 

random sample 

300 spectra of class 1 (substructure present) 
300 spectra of class 2 (substructure absent) 

    

training set 
150 spectra of each class 

 test set 
150 spectra of each class 

generation of 
a classifier 

  test of a 
classifier 

spectral classifier 

 
Figure 2. Development and test of a spectral classifiers for the recognition of a substructure [6]. 
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5. Systematic structure elucidation with isomer generation 
The most important systematic approach for structure elucidation of organic compounds is still 
based on the DENDRAL project [36] (Figure 3). Central tool is an isomer generator software 
capable to generate the exhaustive set of isomers from a given molecular formula. The generator 
also considers structural restrictions which are usually obtained from spectral data. Substructures 
which have to be present in the unknown molecular structure are collected in the so-called 
goodlist while forbidden substructures are put into the badlist [13]. Mass spectrometry can 
contribute to this approach in two aspects: The molecular formula can be determined from high 
resolution data, and structural information can be derived from low resolution data.  

A successful example for this approach of structure elucidation is presented in Figure 4. The 
compound benzene acetic acid, 2-hydroxy, ethyl ester has been considered as unknown [3]. 
Given is the molecular formula and the mass spectrum. Application of software MSclass 
[6,12,13] resulted in substructures for the goodlist and the badlist; only substructures relevant to 
the molecular formula are shown.  

The isomer generator software used was MOLGEN [37-39]. This program computes the 
complete set of connectivity isomers for a given molecular formula; structural restrictions can be 
defined by a goodlist (separated into substructures that may not overlap and those that may 
overlap), and a badlist. Furthermore, lower and upper limits can be defined for bond multiplicity 
and ring size, as well as the number of H-atoms at C-, N-, and O-atoms. The construction of 
isomers is free from duplicates and fast. 

 

 

spectral data (NMR, IR, MS)  pre-knowledge  molecular formula 

 
PLAN 

classifiers 
rules 
tables 

      

restrictions for the unknown molecular structure    

GOODLIST 
substructures present 

BADLIST 
substructures absent 

   

GENERATE   isomer generator    

exhaustive set of possible isomeric molecular candidate structures 

 

TEST 

spectra simulation 
property simulation 
cluster analysis of structures 
further structural restrictions 

reduced set of isomeric molecular candidate structures 

 

Figure 3. Systematic structure elucidation of organic compounds based on the DENDRAL approach [6]. 
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Considering these structural restrictions, six isomers are possible, including the correct solution. 
Computation time on a modern personal computer is only a few seconds when the structural 
restrictions of the goodlist and badlist are considered. 
 

 

 
 

 
 
 
 

C10 H12 O3 

      mass spectrum classification 

   goodlist 
CH2

O
O

O

 
      o, m, p                  ethylester 

badlist 

CH
3

O

O O

O
CH

3
 

          acetoxy           methylester 

CnH2n+1  (n = 4 ... 7) 

      
    isomer 

generation 
 

 
 
 
 

appr. 
327 000 000 
candidates 

 6 candidates 
O

O O

O

O

OH
CH3

 
                      o, m, p                                         o, m, p 

 
Figure 4. Systematic structure elucidation using the molecular formula of the unknown, structural 
restrictions from automatic mass spectra classification and exhaustive isomer generation. Considered as 
unknown: benzene acetic acid, 2-hydroxy, ethyl ester [3]. 
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