<u>Similarity between</u> <u>Chemical Structures</u> of Query Compounds and found Hitlist Compounds in <u>Mass Spectral</u> <u>Similarity Searches</u>

K. Varmuza^{*1}, W. Demuth¹, M. Karlovits¹ W. Werther², E.R. Schmid^{#2}

¹ Vienna University of Technology, Austria Inst. of Chemical Engineering, Laboratory for Chemometrics

² University of Vienna, Austria Inst. of Analytical Chem., Laboratory for Mass Spectrometry

*	Corresponding author	Kurt Varmuza	kvarmuza@email.tuwien.ac.at www.lcm.tuwien.ac.at
#	Presenting author	Erich R. Schmid	erich.schmid@univie.ac.at www.anc.univie.ac.at/massspec.html
	Acknowledgment	Austrian Science Fund, project P14792-CHE	

Poster Presentation: **16th International Mass Spectrometry Conference** 31 August - 5 September 2003, Edinburgh, Scotland

Introduction

Spectra similarity searches (*library searches*) are routinely used in mass spectrometry.

This method is often successful in identifying compounds, provided that the unknown is contained in the spectral library.

What happens

if the unknown is NOT in the library ?!

(1) Some MS database systems claim an *interpretive power*.

(2) We present a study:

How good is the similarity between the chemical structures of the hits and the chemical structure of the unknown ?

How to select a spectra similarity algorithm that gives hitlists with good structure information about the unknown ?

Similarity of Mass Spectra

The measure for the similarity of two mass spectra is based on the widely used correlation coefficient concept:

$$s_{ab} = 100 \Sigma(x_{ia} x_{ib}) / [\Sigma(x_{ia})^2 \Sigma(x_{ib})^2]^{0.5}$$

 x_{ia} variable *i* in spectrum **a** (for instance peak intensity at mass *i*)

- x_{ib} variable *i* in spectrum **b** (for instance peak intensity at mass *i*)
- s_{ab} spectral similarity between **a** and **b**, range 0 100

Variables used for the similarity measure

- peak intensities $x_i = I_m (\% B)$
- weighted peak intensities $x_i = m^{\alpha} I_m^{\beta}$ [1,2]
- spectral features $x_i =$
- $x_i = f(I_m), m = m_1 \dots m_2$ [3,4]

A spectral feature is a linear or non linear function of selected or all peak intensities. In this work 862 spectral features have been used.

Examples are: modulo-14 summation, logarithm of intensity ratios, autocorrelation, peak series.

- [1] S. E. Stein, D. R. Scott, J. Am. Soc. Mass Spectrom. 5 (1994) 859-866.
- [2] S.E. Stein, J. Am. Soc. Mass Spectrom. 6 (1995) 644-655.
- [3] K. Varmuza, in: J. C. Lindon, G. E. Tranter, J. L. Holmes (Eds.), Encyclopedia of spectroscopy and spectrometry, Academic Press, London, 2000, p. 232-243.
- [4] W. Werther, W. Demuth, F.R. Krueger, J. Kissel, E.R. Schmid, K. Varmuza, J. Chemometrics 16 (2002) 99-110.

Similarity of Chemical Structures

The similarity between two chemical structures is measured by the Tanimoto index:

$$t_{ab} = \Sigma \operatorname{AND}(d_{ja}, d_{jb}) / \Sigma \operatorname{OR}(d_{ja}, d_{jb})$$

- d_{ja} substructure descriptor j in structure **a**
- d_{jb} substructure descriptor *j* in structure **b**
- *t_{ab}* Tanimoto similarity between structures *a* and *b*, range 0 1 [5]

The performance (interpretive power) of a library search method is measured by a "grand mean":

$$T_h = (1/nh) \sum_{q} \sum_{k} t_{qk} \qquad k = 1 \dots h \quad \text{(hits)}$$

$$q = 1 \dots n \quad \text{(queries)}$$

- *h* number of hits considered (1 30)
- *n* number of query compounds tested (200 1000)
- t_{qk} Tanimoto index for query structure *q* and hit *k*
- *T_h* grand mean of Tanimoto indices for *h* hits, range 0 1

A set of **1365 "general purpose" substructures** has been defined [6]. A molecular structure is characterized by a bit string (fingerprint) of length 1365. Software **SubMat** is used to calculate these bit strings [7].

- [5] P. Willet, Similarity and clustering in chemical information systems, Research Studies Press, Letchworth (UK), 1987.
- [6] H. Scsibrany, M. Karlovits, W. Demuth, F. Müller, K. Varmuza, Chemom. Intell. Lab. Syst. 67 (2003) 95-108.
- [7] Software SubMat is available from *Laboratory for ChemoMetrics*. Information at www.lcm.tuwien.ac.at (software); demo version and User Guide for free download.

