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Introductory Remarks for Non Chemists (1) 
 
 
 

1. Common-live STUFF, 
 such as air, sea-water, food, plastics, fuel, ... , 
 is a very complicated mixture of many, many  
 (chemical) COMPOUNDS (substances). 
 Typical:  5 - 20   main compounds 
    100 - 1,000 minor compounds 
    10,000 - ...  trace compounds 
 
2. Chemical analytical INSTRUMENTS* can 
 z separate/extract main compounds, 
 z separate/extract a few, especially interesting 
   trace compounds (present in very low  
   concentrations). 
 * For instance chromatographs. 
 
3. Separated (pure) compounds are usually  
 characterized/identified by measuring SPECTRA § # 
 that are often characteristic for a compound. 
 § Spectroscopy: 
  Energy is applied to the molecules, and the effect (absorption, 
  resonance, chemical reaction products, ...) are measured. 

 # Spectra types most often used in chemistry: 
  IR (infrared spectra), MS (mass spectra), NMR (nuclear  
  magnetic resonance spectra), UV (ultra-violet spectra). 
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Introductory Remarks for Non Chemists (2) 
 
 
 

4. A pure chemical COMPOUND consists of  
 MOLECULES that define the compound. 
 Examples of molecular structures (simplified, as colored graphs): 
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caffeine (H-atoms not shown) 

 C, H, N, O are carbon-, hydrogen-, nitrogen-, oxygen-atoms, respectively. 

 
5. IDENTIFICATION of a chemical compound  
 means recognition/determination of its molecular 
  structure.  
 
6. Chemical structures cannot be measured/observed  
 directly, but can only be inferred from 
 z spectral data, 
 z other chemical/physical/biological properties. 
 
7. Available theory and experiences do not allow to  
 establish generally applicable - and useful - 
 relationships between 
 
 
 

 
 
 

spectral data 
(measured) 

chemical structure 
data (desired) 

HawaiiStatConf-Poster-Varmuza-a.doc     2003-05-19                                                                                                                  Page   4  

 
 

Introductory Remarks for Non Chemists (3) 
 
 
 

8. DATABASES (spectra and chemical structures) 
 with up to ca 200,000 entries (compounds) are used. 
 From (very) similar spectra is concluded, that the corresponding 
 chemical structures are similar (or even identical). 
 
9. For "well selected" subsets of chemical compounds 
 mathematical MODELS can be developed, such as 

    chemical structure information   =   f (spectral data) 
       [ identification of compounds ] 

   property of compounds   =   f (chemical structure data) 
     [ drug design, property prediction ] 
 
  typically by applying multivariate data analysis 
  or neural networks ("chemometrics"). 
 
10. CHEMOMETRICS 
 is an interfacial discipline between  
 z instrumental, measurement-oriented chemistry, 
  and chemical technology, 
   and 
 z applied statistics, and computer science. 
 
 
 
 
 

Extraction of information 
from chemistry-relevant data is essential. 
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Identification of a chemical compound 
 
 
 

 
measured spectrum 

 

SEARCH 
for similar spectra in database 

10,000 to 200,000 reference compounds 

 

HITLIST 
10 - 50 reference compounds 
with spectra most similar to 

the spectrum of the unknown 

 
 
 
 
 
 
 

z   First hit has high spectral  
       similarity with unknown. 
z   Unknown is probably  
      contained in the database. 

 z   First hit is not much  
       different from the others. 
z   Unknown may be NOT  
      contained in the database. 

    

IDENTIFICATION 
of 

UNKNOWN 

 INTERPRETATION of 
HITLIST DATA 

Similar structures found ? 
 
 
 
 
 
 
 

additional tools, 
research projects 

routine 
work 

? rather easy challenging 

unknown 

HawaiiStatConf-Poster-Varmuza-a.doc     2003-05-19                                                                                                                  Page   6  

 
 
 



HawaiiStatConf-Poster-Varmuza-a.doc     2003-05-19                                                                                                                  Page   7  

 
 

Spectra as Vectors / Similarity of Spectra 
 
 

 Salicylic acid acetate (aspirin) 
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IR spectrum 
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Spectra can be easily represented by vectors. Sometimes mathematical 
transformations (for instance autocorrelation) are applied, as well as 
transformations guided by spectroscopic experiences. 
Number of vector elements:  200 - 1,000 (depending on resolution) 
 
 

Similarity/diversity of spectra 
 
Most often based on             xA, xB     are vectors representing  
           spectrum A and B, respectively 
 
Correlation coefficient   =   (xA

T. xB) / (|| xA || * || xB ||) 
   or 
Euclidean distance    =   || (xA - xB) ||  
 

sometimes extended by spectroscopic ideas. 
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Frequency distribution of spectral 
similarity for 106 pairs of randomly 
selected different structures from a 
database with 13484 compounds. 
 
hit 1, 1-10, frequency distributions 
of most similar and 10 most similar 
spectra (each of the 13484 spectra 
was used as query spectrum). 
 
Frequency is given in % for 
50 intervals, each 20 units wide. 
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Structures as Vectors / Similarity of Structures 
 
 

Several methods have been developed for the representation of chemical 
structures by vectors. Only one approach is mentioned here: 

Representation of a chemical structure by a binary vector, 
with each binary vector element being a molecular descriptor, 
that indicates presence/absence of a predefined substructure. 

 

Demo example (subgraph isomorphism) 
encoded predefined substructures 
structure 

C
C
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C  C O 

C
C

C
O

 1 0 1 
          Actual number of vector elements (substructures): 200 - 2,000. 
 
Similarity/diversity of chemical structures 
 

Widely used is the             yA, yB     are binary vectors representing  
           structure A and B, respectively 
 

Tanimoto index      t =   (yA
T. yB) / (yA

T.1  +  yB
T.1  -  yA

T. yB) 

     =   Σ AND[yA(j), yB(j)] / Σ OR[yA(j), yB(j)] 
as a similarity measure of two chemical structures (range of t is 0 ... 1). 
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Frequency distribution of structural 
similarity for 106 pairs of randomly 
selected different structures from a 
database with 13484 compounds. 
 
hit 1, 1-10, frequency distributions 
for compounds with most similar 
and 10 most similar spectra (each 
of the 13484 spectra was used as 
query spectrum). 
 
Frequency is given in % for 
50 intervals, each 0.02 units wide. 

 

(Jaccard similarity) 

 

y 
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Exploration of hitlist data 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

spectral
space 

structural
space 

spectral 
similarity

search 

HITLIST 
relevant subset from database

database 
with 

spectra 
and 

structures 

p spectral 
   features 

q molecular 
   descriptors 

x1 y1 

PLS (PCA, Kohonen) mapping 

2- or higher-dimensional
map with spectra 

2- or higher dimensional
map with structures 

PLS-x-1 scores PLS-y-1 scores 

PLS-x-2 
scores 

PLS-y-2 
scores 

k nearest neighbors of unknown relevant substructures

spectrum of 
unknown 

structure of
unknown 

good
ideas

...

start end 

unknown 

?
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Example: IR spectrum similarity search  (1) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 (C)  Cluster analysis of hitlist structures by PCA      
          18 binary substructure descriptors; variance retained in PC1, PC2: 36%, 28% 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Query compound  O
N      3-amino-benzylalcohol 

Database   13484 compounds (IR spectra and structures, SpecInfo) 
Spectral similarity correlation coefficient of absorbance units 
Structural similarity Tanimoto index (t) based on 1365 substructures 

      (A)  Most similar spectra in database                            Tanimoto mean 1 - 5:  0.66    
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t = 0.74 0.48 0.96 0.96 0.14 

      (B)  Most similar structures in database                        Tanimoto mean 1 - 5:  0.91 
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Four groups of chemical structures found (example structures shown)
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Example: IR spectrum similarity search  (2) 
 
 
 

(D)  PLS mapping of spectra (X) and structures (Y) 
 

X: averaged absorbances (autoscaled) of 50 wavenumber intervals between 500 and 3700 cm-1 
Y: 18 binary substructure descriptors (autoscaled)  
PLS-x components are defined by the first two eigenvectors of XTYYTX 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(E)  Kohonen mapping of spectra (X) 
 

X: averaged absorbances of 50 wavenumber intervals between 500 and 3700 cm-1 
Software SOMPAK (Helsinki University of Technology), map size 20*20  
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similar to query spec-
trum, but structures 
are very different. 
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Distances in PLS-
component space can be 
used for a new ranking of 
the hitlist compounds. 

Hitlist numbers 1-25:
1 = most similar  
      spectrum. 

Unknown       is surrounded 
by database compounds with 
similar structures;  
all contain the substructure  
 

N

 

PCA and PLS support the evaluation of hitlists 
    z   by cluster analysis of chemical structures  
    z   by selection of most relevant database structures 
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Hitlist numbers 1-25:
1 = most similar  
      spectrum. 

Hit 2: 
Same situation as 
with PLS.  

Unknown       is surrounded 
by database compounds with 
similar structures. 

Distances in the Kohonen 
map can be used for a new 
ranking of the hitlist 
compounds. 
However, the result 
heavily depends on the 
parameters used. 

Only X-data (spectra) 
have been used for 
this mapping ! 
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Archaeology - Chemometrics 
 
 
 

A terracotta statuette was found in a prehistoric 
settlement near Vienna (Austria). 

 

 

14C dating: 5650 - 5100 B.C. 
 
Seven fragments 
Preserved size   14.2 cm 
Reconstructed size 25    cm 
 
Prehistoric function  
  Maybe an idol (religious object)!
  Maybe just a toy puppet? 
 
Finding date 1989 

 
Grooves were filled with an unknown 

dark material - obviously of organic origin. 
 
First examinations of the dark material and experiences 
with similar material found on other archaeological 
findings - for instance the Neolithic Tyrolean Iceman - 
lead to the idea 

The dark material might be pitch produced 
by pyrolysis of birch wood. 

 

Aim of the work was to evaluate this idea by 
chemotaxonomy + chemometrics. 
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Methods / Data / Conclusions 
 
Compounds 
Wood pitches can be characterized by 
concentration patterns of triterpenoids, such 
as betulin (characteristic for birch trees), or 
friedelin (characteristic for cork oak trees).  

CH2OH

OH

 

Samples 
Reference samples were prepared by pyrolysis of wood and/or bark taken 
from four species of trees of the family Betulaceae. 

Chemical Analysis 
Analysis of pitch samples included several steps: 
Distillation, solid phase extraction, gas chromatography / mass spectrometry, 
identification of main compounds by spectral similarity search, selection of 
50 compounds for multivariate data analysis. 

Data 
33 objects 14 from Betula (birch)      class 1 
(samples)    6 from Alnus  (alder)      class 2 
     7 from Corylus (hazelnut)      class 3 
     5 from Carpinus (hornbeam)     class 4 
     1 archaeological sample (unknown) 
50 features (relative concentrations, autoscaled) 

Conclusions 
The applied data analysis methods strongly indicate: 

The dark material from the Neolithic statuette was prepared 
from wood or bark of birch trees (Betula). 
This conclusion is consistent with other finds in prehistoric Europe. 
Pitch made from birch trees has been used as a multifunctional material (as 
coating of pottery, as glue, even as a gift).  
The investigated pitch from the statuette may have been used to fix some 
textile dressing. 

 

Sauter F., Varmuza K., Werther W., Stadler P.: ARKIVOC 2002 [1] 54-60 (2002) 
Free copy: http://www.arkat-usa.org/ark/journal/2002/General/1-343E/343E.pdf 

tribe 
Betuleae 

tribe 
Coryleae 

betulin  
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PCA and HCA 
 
 
 

PCA  Principal Component Analysis Mapping 
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HCA  Hierarchical Cluster Analysis 
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Similar clustering as obtained with PCA; however, less evident. 
 
 

t1, t2 are scores of PC1 
and PC2, respectively, 
with variances 18.4 and 
11.7% of total variance. 
 
Separation of the tribes 
Betuleae (including  
Betula     and Alnus    ), 
and Coryleae (including  
Corylus    and Carpinus    ).
 
      unknown material 

Betuleae  

Coryleae  
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PLS and LDA 
 
 
 

PLS  Partial Least Squares Discriminant Mapping 
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LDA  Linear Discriminant Analysis Mapping 
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t1, t2 are x-scores of 1st 
and 2nd PLS component. 
X: 50 concentrations 
Y: 4 binary class variables 
PLS: eigenvectors of 
        XT Y YT X 
 

Genus Betula is 
separated from genus 
Alnus and the overlapping 
genera Corylus and 
Carpinus. 

Betula

Alnus 

Corylus + Carpinus

u1 is the LDA discriminant 
variable, calculated from the 
first 25 PCA scores 
(for discrimination of genus 
Betula from the other 
classes).  
 

t1 is the score of PC1. 
 

Genus Betula is well 
separated from the other 
classes.  
 

The unknown     can be 
assigned to class Betula. 

B e t u l a  

o t h e r s  
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Text from Proceedings  

 
Chemists can often measure the properties of 
compounds or processes not directly. Examples of 
such problems are: identification of compounds, 
recognition of the chemical structure; quantitative 
analyses of complex mixtures, determination of the 
origin of samples, and prediction of properties or 
activities of chemical compounds or technological 
materials. In these cases a single variable is 
insufficient to model the desired data or to provide 
the required information. Therefore a multivariate 
approach is necessary for many problems in 
chemistry. The three main application areas are 
exploratory data analysis, classification, and 
calibration. 
 
The identification of chemical compounds is for 
instance an essential task in the characterization of 
materials from environmental chemistry, food 
chemistry, biology, medicine, and technology. 
Identification of a chemical compound is equivalent 
to the recognition or determination of its chemical 
structure. However, chemical structures cannot be 
measured or identified directly, but only by the 
evaluation of appropriate experimental data - usually 
of spectral data. A spectrum (for instance infrared 
spectrum, mass spectrum, nuclear magnetic 
resonance spectrum) can be represented by a vector, 
and such a vector is more or less characteristic for a 
chemical structure. Also a chemical structure can be 
characterized by a vector. Unfortunately, chemistry 
does not provide sufficient theory for the 
relationships between spectral data and chemical 
structure data.  
 
Therefore, databases are widely used that contain 
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chemical structure data and corresponding spectra, 
measured on reference compounds. Identification of 
an unknown compound is usually performed by 
automatic searches for reference spectra that are 
most similar to the measured spectrum. The 
similarity of vectors (representing spectra or 
chemical structures) is for instance defined by the 
Euclidean distance, the correlation coefficient or the 
Tanimoto index. The size of available spectral 
databases is some ten thousands to some hundred 
thousands of compounds; these numbers are much 
smaller than the number of known chemical 
compounds which is several millions. Therefore, 
additional strategies for chemical structure 
elucidation have been investigated in chemistry that 
are based on multivariate modeling, statistics, and 
computer science. Works in this field belong to a 
discipline in chemistry called chemometrics.  
 
Chemometrics is considered as a chemical 
discipline, that uses statistical and mathematical 
methods, to design or select optimal procedures and 
experiments, and to provide maximum chemical 
information by analyzing chemical data. Today's 
chemometrics is dominated by applications of 
multivariate data analysis to chemistry-relevant 
problems. 
 
Typical chemometric applications use the methods 
of principal component analysis, partial least squares 
regression and other concepts from multivariate data 
analysis and statistics - for instance to model 
relationships between spectral and structural data. 
Scatter plots - resulting from these methods, with a 
point for a chemical structure or for a spectrum - are 
helpful in the interpretation of measured spectra 
originating from compounds not present in available 
databases. Multivariate classification methods are 
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helpful for the prediction of parts of the unknown 
molecular structure.  
 
Automatic searches for similar spectra is the most 
popular approach in computer-assisted evaluation of 
spectra. The resulting hitlist contains reference 
spectra (from the spectral database) that are most 
similar to the query spectrum; the hitlist is usually 
ordered by decreasing spectral similarity. If spectral 
data from the unknown compound are contained in 
the spectral library the correct solution is often given 
by the first hit or is among the first hits. If the 
unknown is not contained in the library, the hitlist 
data may be exploited with the aim to gather 
chemical structure information about the unknown.  
 
The interpretative power of a spectral similarity 
search system is the ability to produce hitlists with 
chemical structures that are very similar to the 
structure of query compounds. For a systematic 
evaluation of library search systems it is necessary 
to define similarity criteria for spectra as well as for 
chemical structures.  
 
Chemometrics can be considered as an interfacial 
discipline between measurement-oriented chemistry 
and applied statistics; it concerns the extraction of 
information from chemical data by mathematical 
and statistical tools. Chemometrics mainly focuses 
on the chemical model, rather than on random 
effects or distributions. The basic hypothesis 
suggests that complicated chemical systems can be 
characterized by a set of measured variables and that 
models (so called latent variables like for instance 
principal component scores) can help to find the 
essential information. Selection or creation of 
appropriate problem-relevant features is often more 
important than the method which is then applied for 
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data interpretation. Actually, many parts of 
chemistry can be seen as indirect studies of latent 
concepts and therefore chemometric methods have 
been applied to a huge number of problems. Many 
applications, but by far not all, belong to analytical 
chemistry. 
 
An important branch of chemometrics is pattern 
recognition with the aim of classifying unknowns to 
a class out of a set of pre-determined classes. A great 
variety of different types of samples or materials has 
been investigated, such as food samples, biological 
and medical samples, technological materials, 
environmental and archaeological samples. A typical 
goal of data analysis is to obtain information about 
the origin or quality of samples. The crucial point is 
the characterization of the objects by selecting 
problem-relevant measurements, such as for instance 
concentrations of elements or compounds or 
spectroscopic data. 
 
Multivariate calibration (mainly based on principal 
component analysis, partial least squares regression, 
and artificial neural networks) has the largest 
number of applications of chemometric methods in 
routine work; for instance it became a widely used 
technique in quantitative analysis of complex 
mixtures. Typical examples are the determination of 
fat in meat or of water in protein by fast and cheap 
spectroscopic methods (instead of time- and 
chemicals-consuming wet-chemistry experiments). 
An important field is the investigation of 
quantitative chemical structure - activity 
relationships (QSAR); that means the search for 
mathematical model that are able to predict physical 
or biological properties of chemical compounds by 
using only chemical structure data (drug design).  
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A number of chemometric methods and software 
products are now routinely used in chemical 
laboratories. However, especially in the field of 
chemical structure recognition, many problems are 
unsolved. They require a deeper understanding how 
to model relationships between sets of multivariate 
data and what are appropriate statistical concepts for 
chemistry-relevant problems.  
Copyright: Kurt VARMUZA, Vienna, Austria 
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