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The basic principles of multivariate data analysis in chemometrics are explained. The 
most used methods based on linear latent variables are discussed (principal component 
analysis, linear discriminant analysis) and demonstrated by examples from analytical 
chemistry and spectroscopy. 

 

Introduction 

Chemometrics has been defined as „The chemical discipline that uses mathematical and 

statistical methods to design or select optimal procedures and experiments, and to pro-

vide maximum chemical information by analyzing chemical data".1,2 The most promi-

nent part of chemometrics3-13 is data interpretation by multivariate methods. Chemom-

etric methods are often applied in situations when no sufficient theory is available for 

describing or solving problems. Typical for problems of this type is the use of many 

variables to describe a system; furthermore often only hidden relationships exist be-

tween the available data and the desired information and the aim of chemometrics is to 

find out some of these relationships (Figure 1).  

Examples of such widespread problems in chemistry are: recognition of the chemical 

structure from spectral data (spectral classification), quantitative analyses of substances 

in complex mixtures (multivariate calibration), determination of the origin of samples 

(cluster analysis and classification), and prediction of properties or activities of chemi-

cal compounds or technological materials (quantitative structure-activity or structure-

property relationships). 
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Figure 1. From objects via experimental data and chemometrics to hidden information. 

 

 

Chemometrics provides powerful methods to reduce the large amount of data which is 

produced easily by automated instruments such as chromatographs coupled to a spec-

trometer. Another measure for the huge amount of chemical data available today is the 

number of registered chemical substances by the Chemical Abstract Service which 

reached 22.7 million at the begin of February 2000; the increase per day is more than 

4000 new compounds. Spectroscopic libraries today contain up to some 100 000 entries. 

The typical chemometric strategy (Figure 2) is data-driven and consists of the following 

steps. (a) Collection of data. (b) Generation of a mathematical model which is usually 

based on multivariate statistics or neural networks. (c) Interpretation of the model pa-

rameters in terms of the underlying chemistry. (d) Application of the model to new 

cases, or often the search for a better model or for more appropriate variables. During 

this process the possibility must always be carefully considered that a significant rela-

tionship does not really exist in the given data or cannot be extracted by the applied 

methods. The data-driven philosophy in chemometrics avoids prejudices to some extent 

but on the other hand it includes the danger of finding artifact correlations. Conse-

quently, results  
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Figure 2. Typical strategy in chemometrics. 

 

 

from chemometric methods must not be over-interpreted and it should always be tried to 

explain the resulting model parameters in terms of chemistry. 

 

Multivariate data 

A set of multivariate data describes objects and their features. An object may be for in-

stance a sample, or a spectrum, or a chemical structure. Objects are characterized by a 

pre-defined set of features. A feature is a numerical variable that describes an aspect of 

the objects; typical features are concentrations of selected substances, or intensities of 

spectral signals. The fruitful application of statistical methods requires a reasonable 

number of objects and features; typical for chemical problems are 20 to 1000 objects 

and 3 to 500 features. Such data are best described by an n.p matrix X, containing a row 

for each of the n objects, and a column for each of the p features. 

Each feature can be considered as a coordinate of a point; each object then corresponds 

to a point in a p-dimensional feature space. The fundamental hypothesis for multivariate 

data interpretation is the existence of relationships between the locations or the dis-

tances of points (objects) and relevant properties. A scatter plot is a two-dimensional 

representation of the feature space in which for instance each point corresponds to an 

object (Figure 3). If two features are selected as plot coordinates a feature plot is ob-
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tained; such a plot, however, utilizes only a small part of the information in the data. 

The essential concept of multivariate data analysis is the use of so-called latent vari-

ables as plot coordinates. A latent variable is a mathematical function of all features and 

therefore may contain much more information than a pair of features. The goal of many 

chemometric methods is to find a mathematical function or a more general algorithm to 

define appropriate latent variables. The different methods for calculating latent vari-

ables (also called components) can be grouped into linear and non linear methods or can 

be described by their particular criterion that is optimized. The guiding principle is a 

representation of the p-dimensional multivariate data by a minimum number of latent 

variables. 
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Figure 3. Multivariate data and latent variables. In a simple feature plot two selected 
features are used as plot coordinates. In typical multivariate methods (PCA, PLS) latent 
variables are used as plot coordinates. Many methods use latent variables that are linear 
functions of all features; this corresponds to a projection onto a straight line.  
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Projection of the feature space 

A particular direction that defines a linear latent variable in a p-dimensional feature 

space is described by a vector b (b1, b2, ... bp) which is usually scaled to length one. The 

value of the corresponding latent variable u for an object x (x1, x2, ... xp) is obtained by 

projecting the object point onto a straight line which is defined by the direction b (Fig-

ure 4). Mathematically this is a linear combination of the features xj of the object and 

the vector components bj; an equivalent notation is the scalar product of the vectors 

bTand x . 

u = bT x = b1 x1  +  b2 x2  +  . . .  +  bp xp   (1) 

The value of a latent variable is called a score; scores are often used as plot coordinates. 

The vector components bj are called loadings; they define the direction of the latent 

variable in the feature space and they describe the contributions of the individual fea-

tures to the scores. Usually two orthogonal directions b1 and b2 are used as projection 

axes (the product b1.b2 becomes zero) to define a projection plane. 
 
 
 
 
 
     
     x2 
        
         x 
 
          
         u 
       
        b 
          
         x1 
 
 
 
 
Figure 4. Projection of an object vector x onto a straight line which defines a latent vari-
able by vector b. The value (score) of the latent variable is u. The number of features, p, 
is two in this scheme but is in chemical applications usually between 5 and 200. 
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The vectors b1 and b2 can be arranged in a matrix B. Scores U for objects X are calcu-

lated by a matrix multiplication. 

U =  X . B         (2) 

Two fundamental types of plots can be generated (Figure 5). In a score plot each point 

corresponds to an object; the coordinates are given by the scores. The distances between 

objects in the score plot are approximations of the distances in the multivariate feature 

space; groups (clusters) of similar objects can be detected visually. In a loading plot 

each point corresponds to a feature; the coordinates are given by the loadings of the fea-

tures for the same axes as used in the corresponding score plot. The loading plot indi-

cates the similarities and correlations between features. Furthermore this plot makes 

evident which features are responsible for the relative positions of the objects in the 

score plot. Features with small loadings are located near the origin; they have - on the 

average - only little influence on the data structure. A feature with a high loading for a 

latent variable causes that objects are placed in the corresponding region of the score 

plot if this feature has a large value.  

The mathematical criteria for calculating appropriate directions of latent variables are 

characteristic for the different methods of multivariate data analysis; the methods which 

are most important for chemometrics are listed in Figure 6. The principal aims of multi-

variate data analysis methods are defined as following.  

A. Exploratory data analysis. In a so-called unsupervised situation only the feature 

matrix X is available. The purpose of data interpretation may be a search for groups of 

similar objects (cluster analysis), or a search for outliers (objects that have no similar 

ones in the data set), or a search for relevant features. The mostly used techniques are 

principal component analysis (PCA), cluster analysis by dendrograms, and Kohonen 

maps. Applications in chemistry are for instance: evaluation of data tables obtained by 

automated analytical instruments, search for spectra-structure-relationships or structure-

property-relationships, and cluster analysis of samples or chemical structures.  
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Figure 5. Score plot and loading plot. The score plot in this demo example indicates two 
clusters of objects and one outlier. From the loading plot follows that feature with num-
ber 2 is characteristic for objects that are located in the right upper corner of the score 
plot; features 1, 4, and 6 are characteristic for objects in the left lower corner; features 3 
and 5 are near the origin of the loading plot and therefore have only little influence. 

 

 

B. Classification. Besides a feature matrix X also a y-vector is given that defines the 

class memberships of the objects. A training set containing objects with known class 

memberships is used to develop a classifier. A test set containing objects not present in 

the training set and also with known class memberships serves to evaluate the perform-

ance of the classifier. The most used techniques for multivariate classification are linear 

discriminant analysis (LDA), class modeling (for instance SIMCA), k-nearest-neighbor 
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classification (KNN), and artificial neural networks (ANN). Applications in chemistry 

are for example the recognition of compound classes from spectral data, and the deter-

mination of the origin of samples.  

C. Multivariate calibration. This method is the most frequently and routinely used 

multivariate technique in chemical laboratories. Aim is the development of a mathe-

matical model that describes the relationship between a set of x-variables and one or 

several y-variables. The traditional technique for this purpose is multiple linear regres-

sion (MLR); it has been complemented by more robust and more powerful methods 

such as principal component regression (PCR), partial least squares regression (PLS), or 

artificial neural networks. The main applications in chemistry are infrared spectroscopy, 

evaluation of multi-sensor data, and modeling of structure-property relationships. 
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Figure 6. Mathematical criteria for latent variables with regard to the purpose of data 
analysis. PCA, principal component analysis; LDA, linear discriminant analysis; PLS, 
partial least squares regression; MLR, multiple linear regression; PCR, principal com-
ponent regression; y, dependent variable. 
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Principal component analysis (PCA) 

The most frequently used method with multivariate data is principal component analysis 

(PCA). The latent variable which best describes the relative distances between the ob-

jects is given by the direction with maximum variance. This direction is called the first 

principal component (PC1). The second principal component (PC2) is orthogonal to 

PC1 and again has the maximum possible variance. Further principal components can 

be determined by continuing this concept. For data with n objects and p features the 

maximum number of principal components is given by the minimum of p and n. Deter-

mination of all principal components corresponds to a rotation of the p-dimensional co-

ordinate system. In many cases only PC1 and PC2 are used to define a projection plane 

for a visual inspection of the multivariate data. Note that the correlation coefficient be-

tween the scores of any two principal components is zero; PCA is therefore often used 

to transform data which exhibit highly correlating features into a set of uncorrelated 

new variables (the PC scores). 

In Figure 7 a two-dimensional example with six objects demonstrates the latent variable 

with maximum variance (PC1) in comparison with another latent variable that separates 

two given classes of objects optimally.  

The relevance of a principal component is measured by the variance of the correspond-

ing scores expressed in percent of the total variance (calculated as the sum of the vari-

ances of all features). If the sum of the variances of the two scores which are used as 

projection coordinates is high (for instance above 70% of the total variance) then the 

scatter plot represents a good two-dimensional visualization of the p-dimensional data 

structure.  

The matrix B which contains the principal component vectors has to be calculated by it-

erative procedures. Most used methods in chemometrics are Singular Value Decomposi-

tion (SVD)14,15 and the NIPALS-algorithm;16 the traditional reference method is the 

calculation of eigenvectors from the covariance matrix by Jacobi rotation.15,17 

An application of the PCA to chemical analytical air pollution data is shown in Figure 

8. The original data consist of the concentrations of 20 polycyclic aromatic hydrocar-

bons measured in 70 aerosol samples (50 from city Vienna, 20 from city Linz in Aus-

tria).18 
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Figure 7. Different aims of defining latent variables. PCA, principal component analy-
sis, preserves the distances between the objects by a latent variable which possesses 
maximum variance of the scores. LDA, linear discriminant analysis, results in a latent 
variable which allows maximum separation between two given classes. 

 

 

The measured compounds range from anthracene to coronene; the concentrations are 

given in percent of the sum of all 20. The scatter plot with PC1 and PC2 shows a clear 

separation of the samples from Vienna and Linz. Thus the different concentration pro-

files of polycyclic aromatic hydrocarbons in the two cities are demonstrated: Linz has 

heavy chemical and iron industry while in Vienna the pollution is mainly caused by 

traffic and domestic heating during the cold season. The PCA plot using only the 50 Vi-

enna samples (Figure 9) does not show clearly separated clusters, however, demon-

strates the influence of domestic heating. The diameter of the circles in the plot is drawn 

proportional to the average temperature of the sampling days. The first principal com-

ponent (horizontal axis) mainly describes the factor of domestic heating: at the right 

hand side all samples from summer are located while at the left hand side typical winter 

samples are placed.  
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Figure 8. PCA scatter plot from aerosol data. Objects: 50 samples from city Vienna ( ) 
and 20 samples from city Linz (∆), Austria. Features: concentrations (% sum) of 20 
polycyclic hydrocarbons, autoscaled. Variances of PC1 and PC2 are 45.9 % and 26.0 % 
of total variance, respectively. The samples from the two cities are clearly separated 
showing the different concentration profiles. 
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Figure 9. PCA scatter plot from aerosol data. Objects: 50 samples from city Vienna. 
Features: concentrations (% sum) of 20 polycyclic aromatic hydrocarbons, autoscaled. 
Variances of PC1 and PC2 are 60.0 % and 10.6 % of total variance, respectively. The 
diameter of the cycles is proportional to the average temperature at the sampling day 
(between -6.5 and 28.3 Celsius).  
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Classification by linear discriminant analysis (LDA) 

Discriminant analysis has the aim to assign objects to one of several pre-determined 

classes; only the two-class problem will be treated here briefly. Linear discriminant 

analysis (LDA) uses a latent variable (discriminant variable) in the feature space that 

maximally separates two classes of objects (Figure 7). A widely used criterion for class 

separation is the t-value as known from the statistical t-test. The mathematical tool for 

calculating the direction bLDA which has the maximum possible t-value is multiple linear 

regression. The y-variable is binary in this case and indicates the membership of an ob-

ject to one of the two mutually exclusive classes (for instance with values +1 and -1). 

The discriminant vector bLDA is calculated from the data of a training set containing ob-

jects from both classes (data matrices XA and XB) by 

bLDA  = C -1 (mA - mB)        (3) 

C = [(nA - 1) CA  +  (nB - 1) CB] / (nA + nB - 2)    (4) 

with nA, nB being the number of objects in class A and B, respectively; mA, mB being the 

mean vectors and CA, CB being the covariance matrices of class A and B, respec-

tively.8,14 The discriminant score u is calculated by 

u  = x .  bLDA         (5) 

with x being the feature vector of the classified object. If the values +1 and -1 are used 

to denote class 1 and class 2, respectively, then the object is assigned to class 1 if u > 0 

and to class 2 otherwise.  

Calculation of bLDA requires the inversion of the pooled covariance matrix C which is 

impossible if X contains highly correlated features or if p > n. This problems can be 

overcome by a preceding principal component analysis. Instead of correlating features a 

set of principal component scores is used as independent variables in the regression 

equation (principal component regression, PCR). Remember that PCA scores are un-

correlated by definition. An alternative method would be partial least squares regres-

sion (PLS)6 in which a latent variable is determined so that a maximum covariance to 

the dependent variable y is obtained. 

Multivariate classification is a standard method in many scientific fields ranging from 

food chemistry, spectroscopy, botanical taxonomy to archaeometry. The example given 

here is from mass spectrometry. Measured mass spectra are usually evaluated by a spec-
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tral library search resulting in a hitlist which contains the most similar spectra from a 

spectral library. If the unknown is a member of the library then often an unambiguous 

identification is possible. However, some substance classes exhibit very similar mass 

spectra and simple spectra similarity criteria cannot distinguish between them. For in-

stance fatty acid ethyl esters have very similar mass spectra as the corresponding α-

methyl-substituted methyl esters. LDA has been applied to discriminate between these 

two substance classes. From a mass spectral library 34 ethyl esters (class 1) and 49 α-

methyl-substituted methyl esters (class 2) have been selected and used as a training set. 

The spectra were transformed into a set of 14 features by modulo-14 summation.19 

Next step was a PCA to obtain uncorrelated variables and then LDA was applied. Fig-

ure 10 shows a scatter plot with the discriminant variable as abscissa and the first prin-

cipal component as ordinate. The two classes are completely separated; note that a PCA 

plot would not be able to separate the classes sufficiently. Two additional compounds 

from the library - not used for training - have been projected into the plot; both are cor-

rectly classified. In this successful example it was possible to transform mass spectra 

into appropriate features and then to apply an automatic classification procedure for a 

discrimination of classes of compounds that could not be distinguished by library search 

or by human interpretation of the spectra. Based on the same principles a set of spectral 

classifiers has been developed for automatic recognition of some substructures from low 

resolution mass spectra20,21 and from infrared spectra.22 Such classification results 

can be used together with the molecular formula of the unknown by an isomer generator 

software23. This approach for a systematic structure elucidation is capable to produce 

exhaustive sets of all isomeric compounds fulfilling the classification results.19-

21,24,25  

 

Summary and outlook 

The important task in chemometrics is the extraction of relevant information from 

chemically oriented data. For this purpose tools from mathematics, statistics and com-

puter science are used and especially methods for multivariate data analysis are most 

powerful. Recently also artificial neural networks and genetic algorithms found great in-

terest but could justify the expected performance only in a few examples. Standard 

methods of 
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Figure 10. Separation of two types of fatty acid esters exhibiting very similar mass 
spectra by linear discriminant analysis. , ethyl esters; ∆, α-methyl, methyl esters; 
filled symbols are classified test spectra from C17H35COOC2H5 and 
C16H33CH(CH3)COOCH3 (both correctly assigned). DC, discriminant variable; PC1, 
first principal component. 

 

 

multivariate data analysis remain those procedures which are based on linear latent vari-

ables, such as PCA, PLS, LDA and MLR; nonlinear methods are certainly necessary if 

linear methods fail.  

The need for an automatic extraction of relevant information from complex data will 

remain a prominent task in future application areas such as multivariate calibration, im-

provement of chromatographic separation, interpretation of spectra, classification of 

materials, investigation of relationships between chemical structures and properties, as 

well as for modeling and optimization of syntheses and for process monitoring.  

Chemometrics is already well established in analytical chemistry, drug design and proc-

ess control. In other parts of chemistry a deficit of information about the multivariate 

approach of data analysis is still recognizable. A number of good commercial software 

products for multivariate data analysis is available today and provide powerful tools not 

only for routine problems but also for searching "not yet detected secrets" behind 

chemical data. 
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