
 

  

 

 

 

 

 

 
 
 
 
 
 

 
Introduction 
 

Properties or activities of chemical compounds can be estimated 
by regression models that relate a set of molecular descriptors with the 
property or activity. A large group of molecular descriptors [1] 
comprise the so-called topological (or structural) measures, which are 
based on structural features of the molecular structures under 
consideration. This group can be further divided into several 
categories such as information-theoretic indices, eigenvalue-based 
indices, matrix-based indices, distance-based measures, and so forth. 
But this does not mean that a particular index can be always classified 
uniquely into a given category. In fact, many indices exist which are 
based on several categories, e.g., eigenvalue or distance-based indices 
based on Shannon’s entropy. 

The above mentioned quantitative structure-property or structure-
activity relationships (QSPR/QSAR) [2] can often be successfully 
described by linear models of the form 

 
ŷ  =  b1 x1 + b2 x2 + ... + bm xm + b0                            

 

with ŷ for the predicted property (dependent variable), and x1, x2, ..., 
xm for m descriptors (independent variables). The model parameters 
are the regression coefficients, b1, b2, ..., bm, and the intercept, b0 
(which is zero for mean-centered data); they can be estimated by 
various regression methods using an appropriate calibration data set.  
 

 
 
 
 
 

 
 

 
  

 
 
 
 

The principal aims of model building are small prediction errors |y - 

ŷ| for data from substances in a test set that have not been used 
during model creation. For many QSPR/QSAR problems a small set 
of well understood, relevant descriptors is not known, and therefore a 
large set of descriptors is tried by applying appropriate mathematical 
variable selection and modeling methods. It is essential for a good 
model to have an appropriate (optimized) model complexity to avoid 
underfitting (a too simple model), and overfitting (the model is too 
much adapted to the calibration data) [3]. These aims are mostly 
achieved by cross validation techniques (as in this contribution, see 
below) or bootstrap techniques. 

This review - partly in tutorial style - gives a user-oriented 
description of how to make linear QSPR/QSAR models by PLS, a 
well-proven method of multivariate data analysis (chemometrics), and 
using free, standard software. Recently, a comprehensive overview 
about machine learning methods for property prediction in 
chemoinformatics has been reported [4]. Here, the emphasis is on (1) 
a comparison of some basic variable selection methods, and (2) a 
strategy for evaluating variable selection methods in terms of the 
performance for test set objects. The presented demonstration 
example is about the modeling of the gas chromatographic retention 
index (y) of a set of 209 polycyclic aromatic compounds (PACs) [5]. 
Approximate 3D structures have been created by Corina software [6], 
and molecular descriptors have been computed by Dragon software 
[7]. All other used software is written in R [8]. The programming 
environment R is freely available, and a goal of the contribution is to 
promote the use of this rapidly developing tool in QSPR/QSAR. A 
complete set of R functions (including import of Dragon result files) 
and data sets as used in the example are provided as free 
supplementary material [9].  

We start with introductory remarks about the R programming 
and software environment. Next, a short, user-dedicated introduction 
into the widely used PLS regression method is given. The basics of 
the evaluation of regression models are summarized. The strategy 
"repeated double cross validation" (rdCV, [10]) is explained as a 
powerful approach for optimizing the complexity of PLS regression 
models, together with an independent cautious estimation of the 
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model performance for new cases. Then, basic, strictly defined 
variable selection methods are briefly described. An example includes 
the application of these variable selection methods, followed by a 
careful examination of the resulting variable subsets by rdCV. Finally, 
a QSPR model with 22 descriptors is presented. 

 
Methods 

 

R [8] is an open source software environment originally devoted 
to statistical computing. The structure of R programs has similarities 
with the commercial product Matlab [11] and the free software 
Octave [12], both widely used for numerical computations. Many 
people appreciate R because it is widely distributed and rapidly 
developed, independent from any company or a single user group. R 
was basically developed by Ross Ihaka and Robert Gentleman in 
1994 [13]. More than 4000 contributed packages are available now 
(making it sometimes troublesome to find appropriate ones [14]). 
Latest implementations are not only for statistics but also for 
applications in mathematics, chemistry, biochemistry (e. g., 
Bioconductor [15], providing tools for the analysis of genomic data), 
medicine, geology, and finance (e. g., the non-profit Rmetrics 
Association, https://www.rmetrics.org). 

R is freely available under the GNU General Public License. It 
can be easily installed from http://cran.r-project.org for the operating 
systems Windows, Linus or Mac. Like similar software products, R 
requires some experience in using computer programs; in its standard 
version it is command controlled but not mouse controlled. However, 
a number of user-oriented functions allow the application of high-
level numerical and other formal methods without special skills. 

 

PLS stands for partial least-squares, and is a linear, multiple 
regression method (several x-variables, one or several y-variables) 
frequently used in chemometrics for calibration models [3,16,17]. 
PLS (like similar methods) has advantages that are especially useful - 
even necessary - for typical data sets in chemometrics (including 
QSPR/QSAR): (1) Data with highly correlating x-variables can be 
used (correlating x-variables are even considered as useful "duplicate" 
measurements). (2) Data sets with more variables than samples can be 
used. (3) The complexity of the model can be controlled by the 
number of components, and thus overfitting can be avoided and 
maximum prediction performance for test set data can be approached. 
(4) Several software packages are available. In this review only a few 
features of PLS - essential for the user - are outlined; for technical 
details see [3,17-20]. Note that for PLS different mathematical 
approaches have been published and implemented into the software, 
so it is less strictly defined than the traditional method OLS (ordinary 
least-squares regression, mostly not directly applicable to chemistry-
related data because of correlating variables and a larger number of 
variables than number of objects), and PCR (principal component 
regression, similar to PLS).  

In principle, regression can be carried out directly with the 
variables (e. g., by OLS) but in the powerful methods PLS and PCR 
is performed via a small set of intermediate linear latent variables (the 
components). A component is defined by t = X p. Where X is the 
mean centered variable matrix (n × m) for n objects and m variables; 
p is a loading vector defining an appropriate direction in the m-
dimensional variable space; t is a vector with the n values of the 
component (the scores). According to the concept of PLS, p defines a 
direction which gives the maximum covariance between the modeled 

property and the scores. The empirical covariance between two mean-
centered variables (here the vectors y and t) can be calculated by yT t / 
(n-1); covariance considers the correlation between the variables and 
also their variances (therefore, it depends on the scaling of the 
variables considered - in contrast to the Pearson correlation 
coefficient, which is the basis of OLS). The concept of PCR for 
defining the components is slightly different, as a loading vector is 
determined that gives scores with the highest variance (highest spread 
in x-space), thus ignoring y. Further PLS- or PCA-components can be 
calculated by repeating the strategy. While for PCA (principal 
component analysis) the concept is clearly defined (orthogonal 
loading vectors and uncorrelated score vectors), different strategies 
can be applied for PLS (often the condition uncorrelated scores and 
maximum covariance between scores and y). Typically, 1 to 15 scores 
are used as independent variables in OLS regression. The number of 
components, A, determines the complexity of the model and has to be 
optimized. If A is too small the model is too simple (underfitted) and 
gives high errors in the prediction of y. If A is too large the model is 
highly fitted to the used calibration data, but not optimally 
generalized for new data; therefore, calibration data give very low 
errors, however, new data produce high errors (overfitting). It is a 
great advantage of PLS and PCR to provide this optimization 
(although it requires an appropriate strategy and computational effort, 
see below). Because PLS considers y, the optimum A is often smaller 
than for PCR and therefore better fulfills the concept of parsimony 
for models (however, PLS and PCA often yield similar model 
performances). 

The mathematics is usually not of primary interest for the user 
and is mostly hidden in the software. Essential is the structure of the 
resulting regression model: it is the same for PLS, PCR, and many 
other methods, as defined in Equation (1). Regardless of how many 
components have been found to be optimal, and the strategy applied, 
we have a regression coefficient, bj, for each variable j (and an 
intercept). In general, the resulting regression coefficients are different 
for PLS and PCR, and also the prediction performances of the 
models are somewhat different. 

Software for PLS is contained in the pls [20] and chemometrics 
[3,21,22] R-packages. R functions easier to use for routine 
applications of PLS and model evaluation are included in the 
supplementary material. 

 

Any prediction model makes sense only if appropriate 
performance criteria are known. In the case of calibration models 
(modeling/predicting a continuous property y) the residuals 
(prediction errors), ei 
 

ei  =  yi - ŷi                                                            
 
are the basis for most performance measure, with yi for the given 

(experimental, "true") value and ŷi the predicted (modeled) value for 
a property of an object i. The great number of differently defined 
performance measures and also the various strategies for selecting the 
objects used to calculate prediction errors may be confusing to some 
users. We focus here on elementary concepts as follows. 

Because in chemometrics and QSPR/QSAR the number of 
objects is often rather small, adequate strategies have to be applied for 
splitting the data into a calibration set (used for making a model 
(including optimization of the complexity, say the number of PLS 
components), and a test set (for estimation of the model 
performance). Final performance measures must be from test set data, 
and no (further) model optimization must be done from test set 
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results. Performance data obtained from the calibration set (during 
optimization) are only of secondary interest. Also note that a 
performance measure is an estimated quantity, which has some 
variation depending on the (usually random) split into calibration and 
test set. Therefore, it is better to repeat the process and exhibit 
distributions (represented, e g., by boxplots) for performance criteria 
rather than single numbers (from a single random split). 

Suppose we have z prediction errors, ei (in the simplest case, z is 
the number of objects in a single test set). If z is not very small (say 
>20) a graphical representation of the distribution of ei gives an 
informative picture of the prediction errors to be expected. Often this 
distribution is similar to a normal distribution with a mean near zero, 
and then a single parameter, the standard deviation of ei, is a good and 
widely used measure for the model performance, known as standard 
error of prediction (SEP). SEP is given in units of the property y. In 
case of a normal distribution of the prediction errors, about 95% of 
them are within the tolerance interval +2SEP. Note that SEP refers 
to test set data and is therefore the relevant measure for future uses of 
a final model. Equivalent measures derived from prediction errors 
obtained during cross validation with the calibration set, must be 
clearly marked as such. Sometimes SEC, standard error of calibration, 
is used if a model is applied to the calibration data from which the 
model has been developed; SEC maybe too optimistic for new cases. 
Many other error criteria appear in literature, such as MSE (mean 
squared error = arithmetic mean of squared errors), RMSE (root 
mean squared error = square root of MSE), PRESS (predicted 
residual error sum of squares = z MSE). 

An evident performance measure is the squared correlation 
coefficient, R2, (usually Pearson, rarely the robust measures Spearman 

or Kendall) between y and ŷ - preferably accompanied by the 

corresponding scatter plot. Again, it is essential that the ŷ -values 
come from data of the test set.  

Mathematical variable selection is often necessary in 
QSPR/QSAR because of a large number of available descriptors - 
and the usual lack of understanding the relationships between the 
descriptors and the property. When comparing the performances of 
models with a different number of variables, it has to be considered 
that R2 becomes larger as the number of variables increases. 
Therefore, different criteria are used that apply a penalty to a larger 
number of variables, e. g., the adjusted squared correlation coefficient 

 

ADJR2  =  1 - (n - 1) (1 - R2)/(n - m - 1)              
 

with R2 for the Pearson correlation coefficient, n the number of 
objects, and m the number of variables. For the stepwise variable 
selection described below, we use the Bayes information criterion 

 

BIC  =  n log(RSS/n) + m log(n)                
 

with RSS for the sum of the squared residuals ei (i = 1 ... z), and log 
for the logarithm with base e. A similar criterion is AIC, Akaike`s 
information criterion,  

 

AIC  =  n log(RSS/n) + 2m                 
 

which has a smaller penalty for large m (for n>7). In terms of 
parsimony, a model with a smaller BIC (or AIC) is preferable, 
however, the values for BIC or AIC are meaningless. These three 
criteria require n > m as is the case for OLS which is often applied 
during variable selection, e. g., in stepwise selection. Furthermore, they 
are usually calculated for the calibration set in order to keep the 
computational effort reasonable. However, that means, that a variable 

set giving, e. g., a lower BIC than another one is not necessarily better 
in terms of SEP for test set objects. The strategy rdCV, described 
below, is capable to compare model performances carefully for given 
variable sets. 

 

First the standard procedure for cross validation (CV) is briefly 
explained, and then rdCV is described, a strategy for independent 
estimations of the optimum model complexity and the model 
performance. 

Typical data sets in QSPR/QSAR contain only a rather small 
number of objects (say n from 30 to 500). For the split into a 
calibration set and a test set, the so-called resampling methods are 
applied, e. g., CV or bootstrap techniques. The typical CV strategy is 
described here as often used to estimate the optimum number of PLS 
components (AOPT) from a calibration set (with nCALIB objects), see 
Figure 1. The nCALIB objects are randomly split into s segments (parts) 
of approximately equal size, with the number of segments between 2 
and n, often between 3 and 7. One segment is left out as a validation 
set. The other s-1 segments are used as a training set to create models 
with increasing complexity, e. g., models with 1, 2, 3, …, AMAX PLS 
components (e. g., AMAX = 10). The models are separately applied to 
the objects of the validation set resulting in predicted values of y for 
the different model complexities. This procedure is repeated so that 
each segment is a validation set once. The result of this CV is a matrix 
with nCALIB rows and AMAX columns containing the predicted values 

ŷCV for all objects of the calibration set and all considered model 
complexities. From this matrix and the given target values of y a 
residual matrix (matrix with prediction errors) is computed, and the 
MSECV (mean of squared errors) is calculated for each model 
complexity. For AOPT the number of PLS components with the 
smallest MSECV can be chosen, but usually a somewhat lower value is 
taken (to avoid overfitting) by applying a heuristic algorithm, like e. 
g., the one standard error rule [3,19].  

 

 
 
 
 
 

 
 

 
The prediction errors obtained in CV should not be used for an 

estimation of the model performance for new cases because they are 

Figure 1. Cross validation (CV) for an estimation of the optimum number 
of PLS components, AOPT, from a calibration set, using 4 segments [3]. AOPT 
can result from the global minimum of MSECV (mean of squared prediction 
errors in CV) or e. g., by applying the one standard error rule (dashed 
arrow) for a more parsimonious model. 
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usually too optimistic. Therefore, besides the calibration set a test set 
with objects not used in the estimation of AOPT is necessary. For this 
purpose the total number of objects (n) is randomly split into a 
calibration and a test set - again by CV (thus giving a double CV 
strategy). The outer CV loop makes the split into calibration and test 
set, the inner CV loop is used to estimate AOPT. Test set predictions 

(ŷ) are obtained by making a model from the whole actual calibration 
set with AOPT PLS components as estimated from this calibration set. 

After a complete double CV run we have a test set predicted ŷ for 
each object from which a SEP can be calculated.  

The SEP obtained is a single estimation and depends on the 
applied (random) splits of the objects into segments. Only 
considering a single estimation of SEP can be very misleading, 
especially when comparing different models. An appropriate non 
random split of the objects into "highly representative" sets, e. g., by 
sampling techniques, is usually not applicable for multivariate data. 
However, the variability of SEP (and other measures) can be 
estimated by repeating the double CV with different random splits 
(typically with r = 20 to 100 repetitions). This repeated double cross 
validation (rdCV) [10] yields r estimations of SEP that can preferably 
be represented by a boxplot. In this way different models (e. g., from 
different variable sets) can be compared considering the variability of 
the used performance measure. The rdCV strategy also demonstrates 
the variability of AOPT; the number of estimations for AOPT being r 
times the number of segments in the outer CV loop. A final value, 
AFINAL, may be the value of AOPT with the highest frequency. 
Alternatively a set of several values for AFINAL may be considered 
resulting in several models and combining the predictions by 
averaging or a consensus strategy.  

A final model is computed from all n available objects using 
AFINAL PLS components - of course without any further model 
optimization. The SEP for AFINAL PLS components as obtained 
during rdCV is a good estimation of the model performance for new 
cases. 

The whole rdCV strategy - up to a final model - can be 
automatically applied by the provided R software that optionally also 
produces a number of diagnostic plots. 

 

Data sets in QSPR/QSAR typically have some hundred to some 
thousand descriptors (x-variables), hence a (drastic) variable selection 
appears useful or even necessary. PLS and similar regression methods 
can use data sets with more variables than objects and also highly 
correlating variables; nevertheless there are arguments for variable 
selection: (1) Use of many variables gives a better fit of the model for 
the training data. However, we are usually not primarily interested in 
this effect but in an optimum prediction performance of the test data. 
Therefore, a reduction of the variables can avoid overfitting and lead 
to an improved prediction performance. (2) A model with many 
variables is practically impossible to interpret. An interpretation seems 
feasible only if no more than about a dozen variables are used in the 
model.  

An exhaustive search for the best subset of variables is not 
possible for data sets with more than 20 to 30 variables, and therefore 
in practice all results from variable selection are suboptimal. An 
optimum variable selection for m original variables would require the 
test of 2m -1 variable sets - this number is about a million for m = 20; 
ideally with a strategy that optimizes the performance for test set 
objects (rdCV or double bootstrap). This is computationally not 
feasible - not even for only 20 variables. Therefore, approximate fast 
methods are applied and usually the fit of the training data is used as 
performance measure rather than e. g., SEP for test data. Another 

hardly solvable aspect for practical problems is whether variable 
selection should be performed with subsets (by CV) of the objects 
(probably resulting in several different "optimum" variable subsets) or 
with all objects (with the danger of too optimistic results). Note, that 
merging of two good variable subsets will not necessarily result in an 
improved performance - it may even become worse than the 
performance of each subset.  

Considering the unsolvable problems of variables selection on one 
hand, and the need for variable selection on the other hand, the 
following strategy is claimed here: Variable selection is performed 
with all n available objects thus exploiting all information present in 
the available data (the most evident approach). Several approaches for 
variable selection are applied in parallel and the controlling parameters 
within the methods are varied. Result may be 5 to 20 variable subsets 
(of different size and contents). No performance measures obtained 
during variable selection are considered for the performance of final 
models. Consider the resulting variable subsets as suggestions by a 
good, experienced (but not error-free) friend - or maybe coming from 
a deus ex machina (also the original variable set is something like 
this). These variable subsets (and also the complete set) are then 
carefully tested for their capability to produce models with a high 
performance for test set objects - in this work by rdCV. Typically, 
each variable set gives a set of (say r = 20 to 100, number of 
repetitions in rdCV) estimations of SEP. The power of the different 
variable sets can be compared visually from the boxplots of r SEP 
values. Alternatively statistical tests can be applied (e. g., t-test or U-
test for the comparison of central values) or Kolmogorov-Smirnov 
test for the comparison of distributions. 

The methods for data preprocessing and variable selection as used 
in the example, discussed below, are now briefly described (functions 
in R provided).  

In a simple cleaning step the constant or "almost constant" 
variables have been eliminated. "Almost constant" means that a 
variable has the same value in all but a maximum of k objects. For the 
example k = 3 was used. After cleaning, a single variable selection 
method or a combination of them has been applied. The four variable 
selection methods applied here are as follows. 
 
(1) Select variables with a very high correlation to y (modeled 
property). For the example, sets with 5 to 200 variables possessing 
highest squared Pearson correlation coefficients with y have been 
selected. 
 
(2) Delete variables with a very high correlation to another variable. 
The squared correlation coefficient, R2(xg, xh) between all pairs of 
variables (g, h) is checked. If it is higher than a given limit one of the 
variables is deleted. The deleted variable has the higher sum of 
squared correlation coefficients to all other variables. For the example, 
limits between 0.9999 and 0.9 for RXX

2 have been tested. 
 
(3) Select variables with high absolute standardized regression 
coefficients in a PLS regression model. This method is intended to 
reduce noise and to give a generalization, resulting in a better 
performance for new cases. For this purpose, an optimized PLS 
regression model has been created from autoscaled data (each variable 
is scaled to a mean of zero, and a variance of one) by the rdCV 
strategy. A set of variables is selected possessing highest |bj|, j = 1 ... 
m, see Equation (1) - based on the assumption that these variables 
contribute most to the model. For the example, rdCV was applied 
with 3 segments in the outer loop (test set split), 5 segments in the 
inner loop (estimation of AOPT), and all n = 207 objects were used 
with 50 repetitions. The final optimum number of PLS components, 
AFINAL, was the AOPT value (among 3×50 estimations) with highest 
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frequency. A PLS model with AFINAL components was then made from 
all n objects, and the resulting regression coefficients were considered 
for variable selection. Sets with 20 to 300 variables possessing largest 
|bj| have been tested.  
 
(4) A stepwise selection of variables, using the BIC criterion 
(Equation (4), has been used. A "forward" stepwise selection 
procedure starts with an "empty model" where the dependent variable 
y is explained only by the intercept, and adds in each step one variable 
until no further improvement is possible. A "backward" stepwise 
selection procedure starts with the "full model" using all explanatory 
variables, and removes in each step one variable until no further 
improvement is possible. One can also go in "both" directions by 
adding or removing one variable at a time, starting either from the 
empty or from the full model. Since in the example (see below) we 
have more variables than observations, we cannot start with the full 
model. Here we use two strategies: forward stepwise selection, and 
stepwise selection in both directions (forward/backward). The 
algorithm of a newly developed R function applies one of these 
strategies and stops until no more improvement can be done or until a 
certain number of steps or a pre-defined computing time is reached. 
Although the new function is much faster - especially for more than 
about 100 variables - than the long existing R function step(), about 
one hour computation time is necessary for a data set with n =207 
and m = 2688 (resulting e. g., in 22 selected variables). 
 

We only mention other powerful variable selection methods, not 
used in this mini review article: Lasso regression [3,23], genetic 
algorithms [24], and heuristic replacement methods [25]. 

 
Example 

 

For a set of 209 polycyclic aromatic compounds (PACs) the 2D 
chemical structures have been drawn manually by a structure editor 
software and stored in an SDF-file in Molfile format [26]. Recently, 
the R package RMol [27] has been released. It is available from 
http://sourceforge.net/p/rmol-toolset, and contains functions for 
handling chemical structure data in Molfile format and provides 
connections to graph theory software, e. g., QuACN [28]. The 209 
PACs have molecular formulae with atom ranges C8-24 H6-24 N0-2 O0-2 
S0-2; examples with retention indices (see below) are shown in Figure 
2.  

 

 
 
 

 
 
 

 

Approximate 3D-structures with all H-atoms explicitly given, 
have been created from the 2D structures by Corina software 
[6,29,30]. For the calculation of molecular descriptors either an SDF-
file with these 3D-structures including all H-atoms, or an SDF-file 
with 2D atom coordinates and no H-atoms (H-depleted graphs) have 
been used [31].  

Dragon software, version 6.0 [7], has been used to compute 
molecular descriptors [1]. From the 3D structures with all H-atoms 
explicitly given, a set of 2772 descriptors has been generated 
(excluding constant descriptors). From the 2D H-depleted structures 
a set of 1620 descriptors has been generated (excluding constant 
descriptors). Output from Dragon consists of three files in text 
format (one with descriptor values, one with descriptor names, and 
one with object/structure names). These files have been imported 
into the R environment yielding matrices (209×2772) and 
(209×1620).  

The y-variable to be modeled is the gas-chromatographic (GC) 
retention index, published by Lee et al. [5]. This index is based on the 
reference values 200, 300, 400, and 500 for the compounds 
naphthalene, phenanthrene, chrysene, and picene, respectively, thus the 
reference indices are given by the number of (condensed) rings in 
these structures times 100. Values of y are between 197.0 and 503.9, 
mean is 338.1, and standard deviation is 80.8. Aim of QSPR work is 
a model that predicts y from the x-variables (descriptors) with small 
errors, and preferably using only a subset of the variables. The 
performance of the model has to be estimated for new cases (PACs 
that are not contained in the currently available data set). Multivariate 
regression models for this GC retention index for the same set of 
compounds but using only a subset of the descriptors applied here, 
have been reported [3,10], as well as models with other descriptors 
[32,33]. 

 

(A) The only data cleaning was elimination of constant and 
almost constant variables. A variable was considered as "almost 
constant" if all structures have the same value except three structures 
or less (variables were rounded to 6 decimals). From the 1620 
descriptors obtained from 2D structures without H-atoms 53 were 
deleted, resulting in a matrix X2D (209×1567); from the 2772 
descriptors from 3D structures with all H-atoms 84 were deleted, 
resulting in a matrix X3DH (209×2688). These two matrices were the 
starting data in all variable selection procedures. For the judgment of 
variable selection methods the rdCV strategy has also been applied to 
the data set with all variables. 

 
(B) The first variable selection method tested was selection of 

variables with highest squared Pearson correlation coefficient with 
property y. This evident and often proposed approach has been 
applied to both X-matrices with the aim also to check whether the 
3D descriptors are of benefit for the model performance or not. 
Eleven subsets with 5 to 200 variables have been selected from each 
X-matrix. These subsets and the original variable sets have been tested 
by rdCV, and the summarized results are shown in Figure 3. The 50 
repetitions applied in rdCV give 50 estimations for SEP (each from n 
= 209 test set objects) for each variable set. A boxplot visualizes the 
center value and the variation of the 50 estimations. Note that in a 
boxplot [3,34] the thick horizontal line denotes the median (a robust 
measure for the central value). The lower and upper borders of a box 
are the first and third quartiles, Q1 and Q3, respectively. The lower 
whisker extends to the smallest value in the range Q1 to Q1 - 1.5 IQR, 
the upper whisker to the largest value in the range Q3 to Q3 + 1.5 
IQR, with IQR being the interquartile range Q3 - Q1, a robust 

Figure 2. Examples of polycyclic aromatic compounds (PACs) used and 
their GC retention indices, y [5]. 1, quinoxaline, y = 220.37; 2, 9-
fluoranthene, y = 294.79; 3, chrysene, y = 400.00 (reference); 4, 2-(2'-
naphthyl)-benzene[b]thiophene, y = 428.11. 
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measure for the spread. Outliers are plotted as individual points, and 
the width of the box has usually no meaning.  

For both variable sets models using all variables show smaller 
prediction errors than the variable subsets obtained by this selection 
method. Therefore, we conclude that - at least for the investigated 
data sets - a univariate variable selection by considering maximum 
correlation with y is not successful. This effect has also been found 
with other data sets, e. g., in [35].  

Furthermore we see that 3D descriptors improve the model 
performance considerably; the medians of SEP for 2D and 3D being 
11.0 and 8.5, respectively, without an overlap of the distributions. 
Because in all other variable selection methods tested here, 3D 
descriptors gave better results than 2D descriptors (results not 
shown), in the further discussions only the 3D descriptors are 
considered. The benefit of 3D descriptors is treated here on a purely 
empirical basis, only considering the performance of QSPR regression 
models; a recent study [36] discusses fundamental problems with 3D 
descriptors, e. g., their temperature dependence.  

 

 

 

 
 

 
 
 
 

 

(C) Elimination of x-variables with a high squared Pearson 
correlation coefficient (RXX

2) to any other x-variable was tested only 
for X3DH (209×2688). The values of RXX

2 for the 3611328 pairs of 
x-variables are mostly low (median is 0.128), and only 1 % are > 
0.955. The limits applied for RXX 

2 were 0.9999, 0.999, 0.99, 0.98, 
0.95, and 0.9. If two variables have a higher RXX 

2 than the limit, one 
of them is eliminated (see above in section "Variable selection"). 
Figure 4 shows the results (again boxplots for 50 repetitions in rdCV, 
together with the results obtained from all 2688 variables). 
Elimination of very highly correlating variables, that means 
elimination of identical or almost identical variables (limit for RXX

2 
between 0.9999 and 0.99), does not influence the model 
performance, but elimination of variables with less correlation (RXX 

2 
between 0.98 and 0.9) worsens the model performance considerably. 
Note that a single random split into a calibration and a test set 
(instead of 50 repetitions) may give misleading results because the - in 
some cases very high - variability of SEP would not be considered. 
First eliminating highly correlating variables (RXX 

2 > 0.9999) and 
then selecting 5 to 100 variables with highest correlation with y 
produced even higher prediction errors than only using the latter 
method (results not shown).  

 

 
 
 
 
 
 
 

 
(D) A multivariate approach for variable selection uses the 

standardized regression coefficients of a multiple regression model. A 
PLS model has been calculated from the complete autoscaled 
descriptor set X3DH (209×2688), with the number of PLS 
components optimized by rdCV (AFINAL = 6 with SEP = 7.3; SEC = 
5.0). For variable selection, sets with 20 to 300 variables possessing 
maximum absolute regression coefficients have been selected, and then 
tested by rdCV as described above. Figure 5 shows the results - as 
before boxplots for 50 repetitions in rdCV, together with the results 
obtained from all 2688 variables. We see, that at least 70 variables are 
necessary - selected by this method - for achieving the same 
performance as with all variables. A slight improvement is obtained 
for a set of 100 variables, obviously constituting a good compromise 
between underfitting and reduction of noise. Because the separation of 

Figure 3. Results from variable selection by maximum squared Pearson 
correlation coefficient with y. Boxplots denote 50 estimations of SEP 
obtained by rdCV; m is the number of selected variables; for comparison 
results for the full variable sets (m = 1567 for 2D descriptors, and m = 
2688 for 3D descriptors) are shown. 
 

Figure 4. Results from elimination of variables with a high correlation to 
another x-variable (limits applied for the squared Pearson correlation 
coefficient, RXX 

2, are between 0.9999 and 0.9). Boxplots denote 50 
estimations of SEP obtained by rdCV; m is the number of selected 
variables; for comparison, results for the full variable set (m = 2688) are 
included. 
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the boxplots for 2688 and 100 variables cannot be seen in the Figure, 
three characteristic numbers (first quartile, median, and third quartile 
of the 50 SEP estimations) are given: for m = 2688 the values are 
8.2, 8.5, and 8.8; for m = 100, the values are 7.4, 7.8, and 8.2, 
respectively.  

 

 
 
 
 
 
 
 
 

 
(E) Stepwise variable selection has been performed with the 

forward (F) and the forward/backward (FB) strategy applied to the 
complete descriptor set X3DH (209×2688). Furthermore, pre-filters 
have been used before stepwise selection: (a) elimination of x-variables 
with a squared Pearson correlation coefficient to another x-variable, 
RXX 

2 > 0.9999; (b) elimination of x-variables with a squared Pearson 
correlation coefficient to y, RXY 

2, below a limit (varied between 0.1 
and 0.5); (c) a combination of both. This pre-filtering excludes highly 
correlating variables and variables with very low correlation to y. 
Figure 6 shows selected results - again boxplots for SEP from 50 
repetitions in rdCV. Stepwise variable selection with all 2688 
variables resulted in much smaller sets with 48 (F) and 57 (FB) 
variables, respectively, showing a considerably improved performance. 
Pre-filtering achieved in some cases a further, small improvement of 
the performance and always reduced the number of selected variables 
(compared with no pre-filtering). Best models have been obtained 
with first an elimination of variables with RXY 

2 < 0.1, and then 
forward/backward selection, resulting in 22 selected variables 
(median of 50 SEP values from rdCV is 5.9, compared to 8.5 for 
models with all variables). 
 

(F) The results from the used variable selection methods are 
summarized as follows.  

Selection of variables with high correlations to y produced worse 
models than using all variables. Elimination of highly correlating 
variables gave similar or worse models than using all variables. 
Selection of variables with highest absolute standardized regression 
coefficients (in an optimized PLS model from all variables) had no or 
only small positive influence on the model performance. Stepwise 
selection gave variable subsets with highest performances for the 

prediction. A previous elimination of x-variables with a very low 
correlation to y (RXY 

2 < 0.1) slightly improved the models from 
variable sets obtained by stepwise selection. 

 
(G) A final model for future use has been derived as follows: 

From the many suggestions for variable selection a subset with 22 
descriptors (out of 2688, including some 3D descriptors, see Figure 
6) was most promising because the test set predictions - as obtained 
from rdCV - have smallest errors with a mean for SEP of 5.6. For 
approximately normally distributed errors (which is the case in this 
example) a prediction error of +2SEP, equal to about +12, can be 
given (95% tolerance interval) for predicted y's of new objects. rdCV 
also gives a final estimation for the optimum number of PLS 
components for these 22 variables, namely AFINAL = 15. Note that this 
relative high number for AFINAL is typical for a successful variable 
selection. Figure 7 shows diagnostic plots from rdCV for this small, 
optimum variable set and for all 2688 variables.  

A final model has been calculated from all n = 209 objects, using 
these 22 selected variables and AFINAL = 15 PLS components. No 
further optimization of model parameters is advisable at this stage, 
and the SEC of 4.8 is only a plausibility measure; it is - as expected - 
smaller that SEP (ca 5.6) obtained from test set objects in rdCV. 
Note, SEP is relevant for future use of the model.  

The regression coefficients (b1, ..., b22) of the final model with the 
22 selected variables (denoted by the descriptor codes as used in 
Dragon [7]) are listed here, rounded to 3 decimals: "nCsp2" 
(24.198), "Rperim" (3.629), "D/Dtr12" (0.074), "DECC" 
(7.333), "AAC" (58.633), "SpPosA_Dt" (3.919), "VE2_B(p)" (-

Figure 5. Results from variable selection considering maximum absolute 
standardized regression coefficients of a PLS model (obtained via rdCV 
from all n = 209 objects and all m = 2688 variables). Boxplots are 
constructed from 50 estimations of SEP obtained by rdCV; m is the 
number of selected variables; for comparison, results for the full variable 
set (m = 2688) are included. 
 

Figure 6. Results from stepwise variable selection. Boxplots are 
constructed from 50 estimations of SEP obtained by rdCV. For 
comparison, results for the full variable set (m = 2688) are included. The 
stepwise strategies F (forward) and FB (forward/backward) selected from 
the 2688 variables subsets with 48 and 57 variables, respectively, showing 
a considerable reduction of SEP. Pre-filtering before stepwise selection 
reduced the number of selected variables to 21 to 42, and in some cases 
improved the model performance (selected examples shown). R2xx is the 
applied RXX 

2 for eliminating x-variables with a very high correlation to 
another x-variable; R2xy is the applied RXY 

2 for eliminating x-variables with 
a very low correlation to y; m1 is the number of variables after pre-
filtering. Models with lowest SEP values have been calculated from 22 
variables obtained by pre-filtering with RXY

2 < 0.1, and then 
forward/backward stepwise variable selection. 
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6.714), "ATSC4p" (2.562), "P_VSA_i_2" (-2.678), 
"SpMAD_AEA(bo)" (-0.079), "SM11_AEA(bo)" (10.583), 
"Eig11_AEA(dm)" (-5.52), "Ho_G/D" (-1.842), "RDF060m" (-
1.216), "RDF010s" (11.094), "Mor05v" (-1.234), "Mor02e" 
(1.016), "Mor10p" (4.298), "Mor24s" (3.97), "E1m" (6.367), 
"H3m" (33.932), "H5s" (9.297). Intercept (b0) is 338.086. Note 
that these regression coefficients are not standardized, but refer to the 
original descriptor values. Therefore, their (absolute) values cannot be 
interpreted in terms of importance for the model. About half of the 
descriptors are from 3D structures with H-atoms. Except the first one 
("nCsp2", number of sp2 hybridized carbon atoms, all others are 
based on concepts from graph theory and other mathematics, 
probably difficult to interpret by most chemists. A discussion of the 
definition and possible chemical background of the descriptors is also 
out of the scope of this contribution, see [1]. This situation is typical 
for QSPR/QSAR applications; the models are "black" or "gray" and 
cannot be sufficiently interpreted. Therefore, a careful evaluation of 
the model performance is an absolute requirement, as well as an 
estimation of the applicability domain (not discussed here) for further 
use of a model. Because of the not sufficiently known relationships 
between chemical structures (their representation by molecular 
descriptors) and properties or activities such empirical regression 
models are often accepted in QSPR/QSAR. 

(H) Here are examples of R-functions for the described variable 
selection methods and other tasks [9]. X is the variable matrix (n × 
m), y is the vector with the properties (n values). Result of variable 
selection is always a logical vector (sel) with m values TRUE or 
FALSE that define the selected variables; sel is preferably stored as 
RData file. e. g., by save (sel, file = "sel.RData"). R packages used are 
e. g., chemometrics [21] and pls [20]. 

 
sel <- varsel_almost_const (X, k = 3)  

Delete constant or almost constant (parameter k) 
variables. 

 
sel <- varsel_corr_xy (X, y, m_sel = 10, r2_xy_limit = 0.7)  

Select a maximum of m_sel variables with a squared 
Pearson correlation coefficient with y > r2_xy_limit.  

 
sel <- varsel_corr_xx (X, r2_xx_limit = 0.9)  

Delete all variables with a squared Pearson correlation 
coefficient with another x-variable > r2_xx_limit.  

 
sel <- varsel_pls_regr_coeff (X, y, m_sel = 10)  

Select m_sel variables with highest absolute standardized 
regression coefficients in an optimized PLS model (from 
X and y). Further parameters can be given for rdCV. 

 
sel <- varsel_stepwise_BIC (X, y, mode = "forward", 
maxTime = 200, maxsteps = 20, r_step_resultfile = 
"r_step_BIC.RData")  

Stepwise variable selection using the BIC criterion; mode 
is "forward" or forward/backward ("both"); maximum 
computing time and maximum number of steps can be 
defined, and detailed results from the selection can be 
stored in a result file.  

 
X <- Dragon60_import (dragonfile = "", outfile = 
"descriptors.RData") 

Import of Dragon 6.0 descriptor data (3 text files with 
basic filename dragonfile) and output to a matrix object 
(X) and an RData file (outfile). Missing values are 
converted to the R code NA. 

 
res <- rdcv_pls (X, y, sel_files = "sel.RData", PDFfile = 
"rdCV_plots.PDF")  

Performs rdCV with variable matrix X and property 
vector y. Parameters for rdCV (number of repetitions, 
number of segments, etc.) can be optionally defined. 
sel_files contains a logical vector for variable selection. 
The result object res contains e. g. all SEP values for the 
made repetitions, all estimations for the optimum number 
of PLS components, and the predicted y-values. The 
optional PDF file contains diagnostic plots. 

 
pls_model <- pls_one_model (X, y, a_final) 

Makes a single (final) PLS model from all n objects using 
a_final PLS components (previously optimized, e. g., by 
rdCV). Model parameter (regression coefficients, 
intercept, etc. are provided in the output object 
pls_model, allowing a simple application of the model to 
new objects. 

 
 

Figure 7. Diagnostic plots from rdCV. Upper part is for m = 2688 variables, 
lower part for m = 22 variables selected by first eliminating variables with 
RXY

2 < 0.1 (squared Pearson correlation coefficient between x-variable and 
y), and then stepwise selection forward/backward - this is the variable set 
with best prediction performance. At the left hand side are histograms for 
the estimation of the optimum number of PLS components (150 
estimations each); the value with maximum frequency has been taken as 
AFINAL. At the right hand side the test set predicted y's are plotted versus 
the target values (experimental y). In gray are the results from the 50 
repetitions in rdCV (for m = 22 very close together and therefore mostly 
hidden), in blue are the means of 50 predictions.  
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Summary and Conclusions 
 

A QSPR demonstration example has been worked out using a set 
of partially new R functions for molecular descriptor data as 
generated by Dragon software. PLS was used as regression method 
and some basic variable selection methods have been applied. A 
renewed algorithm for stepwise variable selection allows the use of 
this method for data with up to more than 2000 variables in a 
reasonable computing time. A careful and cautious evaluation of the 
model performances allows reliable conclusions about the power of 
the various variable subsets.  

Variable selection was considered as a separate step - not emerged 
from the evaluation of final models. The applied strategy repeated 
double cross validation (rdCV) for developing PLS regression models 
allows an estimation of the optimum number of PLS components, 
and independently, an estimation of the model performance for test 
set objects that have not been used in any step of model creation or 
optimization. rdCV delivers also estimations of the variation of the 
final optimum number of PLS components, and the final standard 
error of prediction (SEP), thus supporting a reasonable comparison of 
different variable sets. The provided software in R allows interested 
users to apply these methods without effort to other similar data sets.  

There is no general rule which of the variable selection strategies 
is the overall best one. This also depends on the actual data set. Here 
we have seen that the procedure based on excluding highly correlated 
variables performs worse than the other procedures. This result is 
intuitive, because the exclusion of highly correlating variables is based 
on bivariate information only (correlation of one specific explanatory 
variable with the response), while other methods also consider the 
multivariate relation to the other explanatory variables. In other 
applications where many explanatory variables contain no relevant 
information for predicting the response but essentially noise, the 
behavior can be quite different. In that case, the noise could be 
influential to methods considering the multivariate associations, and 
bivariate techniques could be preferable. 

Based on experiences with the used QSPR demonstration example 
and other data sets we suggest to make first an optimized PLS model 
with all descriptors using rdCV. These calculations give a rough 
estimation of the prediction performance (in the used example a mean 
SEP of 8.5 retention index units). Then various variable selection 
methods may be applied in a trial-and-error strategy, and the resulting 
variable subsets investigated by rdCV. In the used example the 
elimination of variables with a very low correlation with y (RXY 

2 < 
0.1) and then a stepwise forward/backward selection resulted in a 
subset with 22 descriptors (out of 2688) exhibiting the best 
performance for new cases (mean SEP 5.6). A similar performance 
can be expected for a final model using this subset of variables and 
made from all objects.  

 

Linear QSPR/QSAR models with R 

9 

Volume No: 5, Issue: 6, February 2013, e201302007 Computational and Structural Biotechnology Journal | www.csbj.org 



Keywords: 
molecular descriptors, PLS, variable selection, cross validation, software R 

 
Competing Interests:  
The authors have declared that no competing interests exist. 

 

 
 

© 2013 Varmuza et al.  
Licensee: Computational and Structural Biotechnology Journal.   
This is an open-access article distributed under the terms of the Creative 
Commons Attribution License, which permits unrestricted use, 
distribution, and reproduction in any medium, provided the original 
author and source are properly cited. 

 

What is the advantage to you of publishing in Computational and 
Structural Biotechnology Journal (CSBJ) ? 
 

 Easy 5 step online submission system & online manuscript tracking 
 Fastest turnaround time with thorough peer review 
 Inclusion in scholarly databases 
 Low Article Processing Charges 
 Author Copyright 
 Open access, available to anyone in the world to download for free 

 
WWW.CSBJ.ORG 
 

 

Linear QSPR/QSAR models with R 

10 

Volume No: 5, Issue: 6, February 2013, e201302007 Computational and Structural Biotechnology Journal | www.csbj.org 

http://www.csbj.org/

