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1. Introduction

Near-infrared (NIR) spectroscopy was applied to bioethanol
fermentations with
• High sample variability from batch to batch due to
changes in feedstock and enzymatic pretreatment

• Multi-constituent substrates
• Minimal sample preparation for rapid, nondestructive
analysis

Objectives
• Quantify relevant compounds: glucose, ethanol, glycerol,
lactic acid, fructose, maltose, arabinose

• Develop PLS regression models based on NIR ab-
sorbance data

• Select important variables by a Genetic Algorithm (GA)
• Optimize the PLS models’ complexity and estimate its
prediction performance for new cases by ”rdCV”

2. Experimental

Process Steps
Wheat/rye/corn → enzymatic pretreatment → enzymatic
starch degradation→ fermentation by yeast→ ethanol con-
taining mash → separate ethanol by distillation → stillage
remains as residue

Sample Preparation
• Centrifugation to remove solids
• Stepwise addition of known amounts of the compound
under investigation (for calibration)

• Determination of reference concentrations (g/L) by HPLC
with refractive index detector

NIR Absorbance Data
1100-2300 nm at 5 nm intervals, AOTF-NIR spectrometer
Brimrose Luminar 5030, fiber-optic transflectance probe.
1st derivative Savitzky-Golay results in 235 x-variables;
variable reduction by GA [1,2] to 15 variables (different vari-
ables for each compound)

3. Method

Repeated Double Cross Validation rdCV
• The data set is randomly partitioned into so segments:
so - 1 segments for calibration, 1 segment as test set.

• A PLS model is derived from the calibration set with op-
timum number of PLS components estimated by s-fold
inner cross validation.

• Application of PLS model to test set results in n/so pre-
dicted values ŷi.

• Systematic variation gives a ŷ for each object.
• The whole process is repeated k (e.g. 100) times.
• Finally, k ·n values ŷ are available.

Implementation in R
rdCV is available as function mvr_dcv in new package
chemometrics [3,4] developed in R [5,6].

Scheme of repeated double cross validation with so = 3 segments in
the outer loop and s = 4 segments in the inner loop. The process is
repeated k times.
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4. Evaluation

Example: Lactic acid quantification in stillages by NIR,
range: 0.06-0.63 g/L
Density distribution of 100 SEPTEST values with increasing
model complexity for 100 repetitions
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R2 = 0.140
SEPTEST = 0.13 g/L
aFINAL = 1
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R2 = 0.812
SEPTEST = 0.06 g/L
aFINAL = 12

Performance criteria derived from rdCV:
SEPTEST standard deviation of test set predicted errors y -ŷ

(k ·n values ŷ available)
aFINAL final optimum of s·k calculated numbers of

PLS components (method: [7])

5. Predicted vs. Experimental

Compounds in Mashes
166 samples, 15 GA selected NIR variables
experimental/predicted y in g/L

Glucose

R2 = 0.900
SEPTEST = 4.5 g/L
aFINAL = 11

Ethanol

R2 = 0.997
SEPTEST = 1.2 g/L
aFINAL = 8

Glycerol

R2 = 0.988
SEPTEST = 0.5 g/L
aFINAL = 11

Compounds in Stillages
50 samples, 15 GA selected NIR variables
experimental/predicted y in g/L

Lactic Acid

R2 = 0.812
SEPTEST = 0.06 g/L
aFINAL = 12

Maltose

R2 = 0.938
SEPTEST = 0.4 g/L
aFINAL = 13

Arabinose

R2 = 0.938
SEPTEST = 0.05 g/L
aFINAL = 14

6. Prediction Performances by rdCV

SEPTEST Concentration
Compound n NIR all NIR GA range in g/L

Mashes
glucose 166 5.6 4.5 0-54
ethanol 166 1.5 1.2 22-88
glycerol 166 0.7 0.5 2-17
Stillages
glucose 50 4.0 1.7 0-24
ethanol 50 3.0 0.8 0-58
glycerol 50 1.7 0.6 3-14
lactic acid 50 0.1 0.1 0-1
fructose 50 0.7 0.5 0-6
maltose 50 0.8 0.4 0-6
arabinose 50 0.1 0.1 0-1

n number of samples
SEPTEST standard deviation of 100·n prediction errors (g/L)
NIR all all 235 NIR absorbance values available
NIR GA 15 GA selected NIR absorbance values

7. Method Comparison

Results of repeated double cross validation (rdCV) are com-
pared with 4-fold cross validation as implemented in soft-
ware Unscrambler [8]. All data sets with 15 GA selected
variables.

rdCV CV
Compound n SEPTEST aFINAL SEPCV aCV

Mashes
glucose 166 4.5 11 5.2 8
ethanol 166 1.2 8 2.7 2
glycerol 166 0.5 11 1.0 4
Stillages
glucose 50 1.7 13 2.3 5
ethanol 50 0.8 15 2.1 4
glycerol 50 0.6 15 0.8 10
lactic acid 50 0.1 12 0.1 10
fructose 50 0.5 12 0.6 4
maltose 50 0.4 13 0.5 6
arabinose 50 0.1 14 0.1 5

n number of samples
repeated double cross validation in R:
SEPTEST standard deviation of 100·n test set predicted errors (g/L)
aFINAL optimum number of PLS components
4-fold random cross validation in Unscrambler:
SEPCV standard deviation of n CV predicted errors (g/L)
aCV optimum number of PLS components

8. Conclusions

• Easily available near-infrared spectroscopy data are
very promising for the quantification of diverse com-
pounds in highly variable substrates of the bioethanol
process. Samples included three different feedstock op-
tions (wheat, rye, and corn) and six different enzymatic
pretreatments.

• Variable selection by Genetic Algorithm improves pre-
diction performance for all PLS models.

• Repeated double cross validation offers a sophisticated
optimization strategy for model complexity (number of
PLS components). Furthermore, prediction performance
can be reasonably estimated.

• In comparison, 4-fold cross validation yields higher
prediction errors, as the optimum number of PLS com-
ponents is chosen more conservatively.

• Evaluation of prediction quality suggests that a higher
number of PLS components does not necessarily imply
overfitting.

• Implementation of repeated double cross validation in
software R is fast and easy with typical computation
times of 0.5 to 10 minutes.
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