

Quantitative Analysis by Near-Infrared Spectroscopy of

Compounds Relevant in Bioethanol Production

Bettina Liebmann*, Anton Friedl, Kurt Varmuza

Vienna University of Technology Institute of Chemical Engineering Getreidemarkt 9/166-2, A-1060 Vienna, Austria www.lcm.tuwien.ac.at, www.thvt.at bettina.liebmann@tuwien.ac.at

1. Introduction

Near-infrared (NIR) spectroscopy was applied to bioethanol fermentations with

- High sample variability from batch to batch due to changes in feedstock and enzymatic pretreatment
- Multi-constituent substrates

4. Evaluation

- Example: Lactic acid quantification in stillages by NIR, range: 0.06-0.63 g/L
- Density distribution of 100 SEP_{TEST} values with increasing model complexity for 100 repetitions

Results of repeated double cross validation (rdCV) are compared with 4-fold cross validation as implemented in software Unscrambler [8]. All data sets with 15 GA selected variables.

- Minimal sample preparation for rapid, nondestructive analysis

Objectives

- Quantify relevant compounds: glucose, ethanol, glycerol, lactic acid, fructose, maltose, arabinose
- Develop PLS regression models based on NIR absorbance data
- Select important variables by a Genetic Algorithm (GA)
- Optimize the PLS models' complexity and estimate its prediction performance for new cases by "rdCV"

2. Experimental

Process Steps

Wheat/rye/corn \rightarrow enzymatic pretreatment \rightarrow enzymatic starch degradation \rightarrow fermentation by yeast \rightarrow ethanol containing **mash** \rightarrow separate ethanol by distillation \rightarrow **stillage** remains as residue

Sample Preparation

Centrifugation to remove solids

- Stepwise addition of known amounts of the compound under investigation (for calibration)
- Determination of reference concentrations (g/L) by HPLC with refractive index detector

NIR Absorbance Data

 $R^2 = 0.812$

 $a_{\text{FINAL}} = 12$

0.06

SEP_{TEST} = 0.06 g/L

all 235 NIR variables very low predictive performance higher complexity \rightarrow larger errors

broad error distributions

number of PLS compone

4 -5 -

15 GA selected NIR variables

sound predictive performance higher complexity \rightarrow reduced errors

narrow error distributions

no overfitting

Performance criteria derived from rdCV:

SEP_{TEST} standard deviation of test set predicted errors $y - \hat{y}$ $(k \cdot n \text{ values } \hat{y} \text{ available})$ final optimum of $s \cdot k$ calculated numbers of $a_{\sf FINAL}$ PLS components (method: [7])

5. Predicted vs. Experimental

Compounds in Mashes

		rdCV		CV	
Compound	п	SEP _{TEST}	a _{FINAL}	SEP_CV	a _{CV}
Mashes					
glucose	166	4.5	11	5.2	8
ethanol	166	1.2	8	2.7	2
glycerol	166	0.5	11	1.0	4
Stillages					
glucose	50	1.7	13	2.3	5
ethanol	50	0.8	15	2.1	4
glycerol	50	0.6	15	0.8	10
lactic acid	50	0.1	12	0.1	10
fructose	50	0.5	12	0.6	4
maltose	50	0.4	13	0.5	6
arabinose	50	0.1	14	0.1	5

number of samples repeated double cross validation in R: standard deviation of $100 \cdot n$ test set predicted errors (g/L) SEPTEST optimum number of PLS components **a**final 4-fold random cross validation in Unscrambler: standard deviation of *n* CV predicted errors (g/L) SEP_{CV} optimum number of PLS components $a_{\rm CV}$

8. Conclusions

• Easily available near-infrared spectroscopy data are very promising for the quantification of diverse compounds in highly variable substrates of the bioethanol

1100-2300 nm at 5 nm intervals, AOTF-NIR spectrometer Brimrose Luminar 5030, fiber-optic transflectance probe. 1st derivative Savitzky-Golay results in 235 x-variables; variable reduction by GA [1,2] to 15 variables (different variables for each compound)

3. Method

Repeated Double Cross Validation rdCV

- The data set is randomly partitioned into s_0 segments: s_o - 1 segments for calibration, 1 segment as test set.
- A PLS model is derived from the calibration set with optimum number of PLS components estimated by *s*-fold inner cross validation.
- Application of PLS model to test set results in n/s_o predicted values \hat{y}_i .
- Systematic variation gives a \hat{y} for each object.
- The whole process is repeated k (e.g. 100) times.
- Finally, $k \cdot n$ values \hat{y} are available.

Implementation in R

rdCV is available as function mvr_dcv in new package chemometrics [3,4] developed in R [5,6].

Scheme of repeated double cross validation with $s_o = 3$ segments in the outer loop and s = 4 segments in the inner loop. The process is repeated k times.

166 samples, 15 GA selected NIR variables experimental/predicted y in g/L

Compounds in Stillages

50 samples, 15 GA selected NIR variables experimental/predicted y in g/L

6. Prediction Performances by rdCV

Compound	n	SEF NIR all	TEST NIR GA	Concentration range in g/L
Mashes				
glucose	166	5.6	4.5	0-54
ethanol	166	1.5	1.2	22-88
glycerol	166	0.7	0.5	2-17
Stillages				
glucose	50	4.0	1.7	0-24
ethanol	50	3.0	0.8	0-58
glycerol	50	1.7	0.6	3-14
lactic acid	50	0.1	0.1	0-1
fructose	50	0.7	0.5	0-6
maltose	50	0.8	0.4	0-6
arabinose	50	0.1	0.1	0-1

process. Samples included three different feedstock options (wheat, rye, and corn) and six different enzymatic pretreatments.

- Variable selection by Genetic Algorithm improves prediction performance for all PLS models.
- Repeated double cross validation offers a **sophisticated** optimization strategy for model complexity (number of PLS components). Furthermore, prediction performance can be reasonably estimated.
- In comparison, 4-fold cross validation yields higher prediction errors, as the optimum number of PLS components is chosen more conservatively.
- Evaluation of prediction quality suggests that a higher number of PLS components does not necessarily imply overfitting.
- Implementation of repeated double cross validation in software R is fast and easy with typical computation times of 0.5 to 10 minutes.

9. References

- . Software MobyDigs, v 1.0. Talete srl, www.talete.mi.it, Milan, Italy, 2004.
- 2. Leardi, R.: J. Chromatogr. A 1158 (2007) 226-233.
- 3. Varmuza, K., Filzmoser, P.: Introduction to Multivariate Statistical Analysis in Chemometrics. CRC Press, Boca Raton, FL,2009.

repeat k times

number of samples n

SEP_{TEST} standard deviation of $100 \cdot n$ prediction errors (g/L)

all 235 NIR absorbance values available NIR all

NIR GA 15 GA selected NIR absorbance values 4. Filzmoser, P., Liebmann B., Varmuza, K.: J. Chemom. 23 (2009) 160-171.

5. Software R, v 2.8.1. R Development Core Team, www.r-project.org, 2009.

6. Mevik, B. H., Wehrens, R.: J. Statistical Software 18 (2007), issue 2.

7. Hastie, T., Tibshirani, R. J., Friedman, J.: The Elements of Statistical Learning. Springer, New York, USA, 2001.

8. Software The Unscrambler v 9.0. Camo Process AS, www.camo.no, Oslo, Norway, 2004.

We gratefully acknowledge support by the Austrian Research Promotion Agency (FFG), BRIDGE program, project no. 812097/11126 and W. Krenn, Vogelbusch GmbH Vienna. We thank P. Filzmoser (Institute of Statistics and Probability Theory, Vienna University of Technology) for collaboration in statistics.