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Classification of objects 
Since the very beginning of chemometrics, classification of objects has been an 
important task.  Common deficiencies of empirical classification models 
(classifiers) are 
• inappropriate performance measures, 
• poor strategies for (1) optimizing the complexity of classifiers , (2) estimating 

the performance of classifiers, 
• mixing model optimisation and performance estimation. 
We present the powerful and easily applicable strategy repeated double cross 
validation (rdCV) [1, 2], and apply rdCV to the classification methods  (1) D-PLS, 
discriminant PLS, (2) KNN, k-nearest neighbour classification, and (3) SVM, 
support vector machine classification.  
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Optimum model complexity 

rdCV results 

Conclusions 
• rdCV is a resampling method combining some systematics and randomness. 
• rdCV is applicable to calibration and classification problems for data sets with 

approximately  ≥ 25 objects. 
• In rdCV, optimization of model complexity (model parameter) is 

separated from the estimation of model performance. 
• rdCV provides estimations of the variability of model complexity and of model 

performance. 
• rdCV is easily applicable, fast and free: R-package “chemometrics” [7], 

www.lcm.tuwien.ac.at/R 
 
 

Multivariate classification methods 
D-PLS, Discriminant PLS. Linear, binary classification of class 1 (y=-1), and class 2 
(y =  +1) . Class assignment: if ŷ < 0 assign to class 1, else to class 2. 
Optimisation of model complexity: a, number of PLS components. 
KNN, k-nearest neighbour classification. Nonlinear classification based on the 
(Euclidean) distance between objects in x-space. Find nearest neighbours (objects 
with known class membership) to query object. 
Optimisation of model complexity: k, number of neighbours. 
SVM , Support Vector Machine classification. Nonlinear classification. 
Optimisation of SVM parameter γ.  
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Avoid:   
Overall predictive ability = (n11 + n22)/n 
It is very misleading if classes differ 
much in size.  
 
 

Performance for new cases 

“Standard error method” 

“Predictive ability P” 

Example 1: Origin of Italian olive oil 
n = 572 oils, 9 classes (with 25 to 206 samples) from 9 areas in Italy,  
m = 8 fatty acid concentrations [4], R [5] package “classify”, data(olive). 
rdCV: nREP = 50 repetitions, sOUT = 2, sIN = 6  
Optimization results: KNN: kFINAL = 1; DPLS: aFINAL = 7; SVM: γFINAL = 0.07 

 

Repeated double cross validation, rdCV 

The standard error of the mean, SE, is 
used to find the optimum 
optimization parameter, AOPT [3]. 

Depends on (random) split into calibration set and test set. 
Thus, repetitive random splits are desirable! 

Performance for new cases estimated from test data 
(only using outer CV loops) 
From n x nREP test set predictions at AFINAL, the predictive ability P  
(or other performance criteria) is calculated for each repetition. 
The variation of P is shown in a box plot.  

Optimum model complexity estimated from calibration data 
(only using inner CV loops)  
From nREP x sTEST optimisations of the optimum complexity A, the most 
frequent value is taken as the final optimum complexity AFINAL. 

rdCV scheme 

Example 2: Spectra-structure relationship  
Chemical substructures present (class 1) / not present (class 2), n = 600 
(class 1: 300, class 2: 300), m = 658 spectral descriptors derived from mass 
spectra [6], R-package “chemometrics” [7], data(phenyl) 
rdCV: nREP = 20 repetitions, sOUT = 2, sIN = 6  
Optimization results: KNN: kFINAL = 3; DPLS: aFINAL = 2; SVM: γFINAL = 0.0002 
Computation time: KNN 550 s, DPLS 42 s, SVM 940 s. 
 

 

 

 

Both KNN and SVM show good prediction performance; the mean of their 
average predictive ability is around 0.9, except for the oils from class “Sicily”. 
For this multiclass problem, DPLS performs worse.  

For this 2-class problem, DPLS performs equally well as 
SVM classification. KNN classification shows lower 
average predictive ability and more variation of P.  


