WIEN

Repeated double cross validation for optimization and evaluation of empirical classifiers

Kurt Varmuza¹, <u>Bettina Liebmann¹</u>, Peter Filzmoser²

1 Institute of Chemical Engineering, Vienna University of Technology, Vienna, Austria, www.lcm.tuwien.ac.at 2 Institute of Statistics and Probability Theory, Vienna University of Technology, Vienna, Austria, www.statistik.tuwien.ac.at/public/filz

Classification of objects

Since the very beginning of chemometrics, classification of objects has been an Common deficiencies of empirical classification models important task. (classifiers) are

- inappropriate performance measures,
- poor strategies for (1) optimizing the complexity of classifiers , (2) estimating the performance of classifiers,
- mixing model optimisation and performance estimation.

rdCV results

Optimum model complexity estimated from calibration data (only using <u>inner</u> CV loops)

From *n*_{REP} x *s*_{TEST} optimisations of the optimum complexity *A*, the most frequent value is taken as the final optimum complexity A_{FINAL} .

Performance for new cases estimated from test data (only using <u>outer</u> CV loops)

We present the powerful and easily applicable strategy repeated double cross validation (rdCV) [1, 2], and apply rdCV to the classification methods (1) D-PLS, discriminant PLS, (2) KNN, k-nearest neighbour classification, and (3) SVM, support vector machine classification.

Multivariate classification methods

D-PLS, Discriminant PLS. Linear, binary classification of class 1 (y=-1), and class 2 (y = +1). Class assignment: if $\hat{y} < 0$ assign to class 1, else to class 2. Optimisation of model complexity: *a*, number of PLS components.

KNN, k-nearest neighbour classification. Nonlinear classification based on the (Euclidean) distance between objects in x-space. Find nearest neighbours (objects) with known class membership) to query object.

Optimisation of model complexity: k, number of neighbours.

SVM, Support Vector Machine classification. Nonlinear classification. Optimisation of SVM parameter γ .

Repeated double cross validation, rdCV

Optimum model complexity

From $n \ge n_{\text{RFP}}$ test set predictions at A_{FINAL} , the predictive ability P (or other performance criteria) is calculated for each repetition. The variation of *P* is shown in a box plot.

Example 1: Origin of Italian olive oil

n = 572 oils, 9 classes (with 25 to 206 samples) from 9 areas in Italy, *m* = 8 fatty acid concentrations [4], R [5] package "classify", data(olive).

rdCV: n_{REP} = 50 repetitions, s_{OUT} = 2, s_{IN} = 6

Optimization results: KNN: $k_{FINAL} = 1$; DPLS: $a_{FINAL} = 7$; SVM: $\gamma_{FINAL} = 0.07$

Both KNN and SVM show good prediction performance; the mean of their average predictive ability is around 0.9, except for the oils from class "Sicily".

optimization parameter, A 5 6 7 8 (k, a, y) A_{MAX} (global maximum) A_{OPT} = smallest A with $P_{\text{MEAN}} \geq P_{\text{MEAN, MAX}} - \pi SE$ The standard error of the mean, SE, is used to find the optimum optimization parameter, A_{OPT} [3].

PMEAN, MAX

SE

Performance for new cases

Depends on (random) split into calibration set and test set. Thus, repetitive random splits are desirable!

"Predictive ability P"

For this multiclass problem, DPLS performs worse.

Example 2: Spectra-structure relationship

Chemical substructures present (class 1) / not present (class 2), n = 600(class 1: 300, class 2: 300), m = 658 spectral descriptors derived from mass

spectra [6], R-package "chemometrics" [7], data(phenyl)

rdCV: n_{REP} = 20 repetitions, s_{OUT} = 2, s_{IN} = 6 Optimization results: KNN: k_{FINAL} = 3; DPLS: a_{FINAL} = 2; SVM: γ_{FINAL} = 0.0002 Computation time: KNN 550 s, DPLS 42 s, SVM 940 s.

For this 2-class problem, DPLS performs equally well as SVM classification. KNN classification shows lower average predictive ability and more variation of *P*.

Conclusions

- rdCV is a resampling method combining some systematics and randomness.
- rdCV is applicable to calibration and classification problems for data sets with approximately ≥ 25 objects.
- In rdCV, optimization of model complexity (model parameter) is separated from the estimation of model performance.
- rdCV provides estimations of the variability of model complexity and of model performance.

rdCV scheme

repetition loop: n _{REP} (20 - 100) times with different random splits into calibration and test set
double CV with all <i>n</i> objects
outer CV loop
CV splits into calibration set + test set (s _{TEST} segments)
inner CV loop with the calibration set
CV splits into training and validations sets (s _{CALIB} segments)
O one estimation of optimum complexity
$O_{\text{TEST}}\hat{y}$ for the current test set objects
(for one of s _{TEST} segments, for all complexities)
TEST \hat{y} for all <i>n</i> objects (for all complexities)
I stream estimations of the optimization criterion

• rdCV is easily applicable, fast and free: R-package "chemometrics" [7], www.lcm.tuwien.ac.at/R

References

[1] P. Filzmoser, B. Liebmann, K. Varmuza, J. Chemometrics, 23, 160 (2009).

[2] K. Varmuza, P. Filzmoser: Introduction to multivariate statistical analysis in chemometrics, CRC Press, Boca Raton, FL, USA (2009).

[3] T. Hastie, R. Tibshirani, J. Friedman. The Elements of Statistical Learning, 2nd ed., Springer, NY, USA (2009).

[4] M. Forina, C. Armanino, S. Lanteri, E. Tiscornia: in Food Research and Data Analysis; ed. H. Martens, H. Russwurm Jr., Applied Science Publ. London, 189-214 (1983)

[5] R. A language and environment for statistical computing. R Development Core Team, Vienna, Austria, 2011. www.r-project.org [6] W. Werther, W. Demutz, F.R. Krueger, J. Kissel, E.R. Schmid, K. Varmuza, J. Chemom, 16, 99 (2002).

[7] P. Filzmoser, K. Varmuza: chemometrics: Multivariate Statistical Analysis in Chemometrics, R-package v. 1.3.8, 16-02-2012. http://cran.r-project.org/web/packages/chemometrics/index.html

Acknowledgements. Anton Friedl (Institute of Chemical Engineering, TU Vienna, Austria) is warmly thanked for providing financial support for the presenting author.

Chemometrics in Analytical Chemistry CAC 2012, Budapest, Hungary, 25-29 June 2012