WIEN

NIR spectroscopy and chemometrics for ionic liquids: lignocellulosic biomass dissolution

www.thvt.at

Bettina Liebmann¹, Joana Rodrigues², Anton Friedl¹, Kurt Varmuza¹

¹ Institute of Chemical Engineering, Vienna University of Technology, Vienna, Austria. bettina.liebmann@tuwien.ac.at ² Institute for Biotechnology & Bioengineering, University of Minho, Braga, Portugal

Introduction

The dissolution in ionic liquids (IL, [1]) is a new, alternative technology to disrupt the complex fibre network of lignocellulosic biomass at comparatively mild conditions [2]. Its three main compounds – cellulose, hemicelluloses, and lignin – can be separated by simple addition of an anti-solvent; e.g., the addition of water immediately precipitates amorphous cellulose from the IL. Cellulose, hemicelluloses, and lignin are interesting renewable sources for biofuels, chemicals,

Dissolution of pure compounds in IL

After mixing the pure compounds with the IL, it was necessary to dissolve the particles and agglomerations by ultrasound and temperatures 40-60 °C for 7-24 hours to obtain clear solutions.

and biomaterials. In this preliminary study we investigate the applicability of NIR spectroscopy and chemometrics for quantifying the three main compounds of lignocelluloses in IL.

Ionic Liquids

- consist entirely of ions (salts)
- melting point < 100°C (liquid at room T!)
- negligible vapour pressure
- excellent thermal stability up to 400°C
- non flammable
- electrically conducting, magnetic
- increasing scientific relevance since 2000
- many interesting applications!
- "design" properties by ion combination

(Bio-)Polymer Processing

• solvent for regenerating cellulose (fibres, films) • enabling technology for manufacturing cellulose • dissolution and separation of lignocellulosic biomass

Chemical Processing

• reaction media, catalysts, solvents

Metal Processing

• electroplating (aluminum, chromium) • electropolishing of metal surfaces

Electrochemistry

• high-performance electrolyte in lithium ion batteries • solvent and electrolyte in solar cells

Engineering

- non-flammable hydraulic liquids
- high-performing lubricants
- liquid piston and gas compression

Separation Processes

- entrainer in extractive distillations (e.g., ethanol/water)
- extraction processes
- purification of gases

Functional Fluids

- antistatic additives, polymer additives
- catalysts

NIR absorbance spectra

• reactive building blocks

Lignocellulosic Biomass

- renewable plant material such as straw or wood
- main components: cellulose, hemicelluloses, lignin (see pie chart, approx. for straw)
- interesting renewable sources for biofuels, chemicals, biomaterials
- **problem**: complex fibre structure is recalcitrant against decomposition
- conventional technology for disruption: high T, high p, aggressive chemicals [3]
- "green" technology: dissolution in "EMIM-OAc", a non-toxic, biodegradable IL [4]

Experiments

- **Ionic liquid**: 1-ethyl-3-methylimidazolium acetate (EMIM-OAc > 98%, >2 ϵ/g)
- **30 synthetic standards** of IL spiked with (a) <u>cellulose</u> Avicel[®] with 4-22 w-%, (b) <u>lignin</u> "Kraft" with 1.5-15 w-% or (c) hemicellulose <u>xylan</u> from beech wood with 3.2-20 w-%.
- NIR spectrometer (Brimrose Luminar 5030, AOTF), NIR absorbance measured at 1100-2300 nm (5 nm intervals, 241 variables).

PLS regression models

SEP_{cv}, standard error of prediction from leave-one-out cross validation a_{cv}, number of PLS components PLS-models with leave-one-out CV in Unscrambler [5].

Summary and Outlook

- Empirical models for the concentration of cellulose, lignin, and xylan in ionic liquid EMIM-OAc result in good prediction performance.
- In the next step, experiments will focus on multi-component mixtures of cellulose, lignin, and xylan in the ionic liquid.
- Good reference values for actually dissolved straw components in the IL is a limiting factor in PLS model building for industrial application.

NIR transflectance probe with variable pathlength for liquid samples (up left); NIR diffuse reflectance probe for solid samples (up right).

Right: NIR spectrum and molecular structure of the used IL; NIR spectra of pure solid cellulose, lignin, and xylan.

References

[1] A. Kokorin (ed.): *Ionic liquids: Applications and Perspectives*, InTech, Rijeka, Croatia, 2011. [2] N. Sun, H. Rodriguez, M. Rahman, R.D. Rogers, Where are ionic liquid strategies most suited in the pursuit of chemicals and energy from lignocellulosic biomass? Chem. Commun., 47, 1405 (2011). [3] J.Y. Zhu, X. Pan, R.S. Zalesny Jr., *Pretreatment of woody biomass for biofuel production:* energy efficiency, technologies, and recalcitrance, Appl. Microbiol. Biotechnol., 87, 847 (2010). [4] P. Mäki-Arvela, I. Anugwom, P. Virtanen, R. Sjöholm, J.P. Mikkola, Dissolution of lignocellulosic materials and its constituents using ionic liquids—A review, Ind. Crops Prod., 32, 175 (2010). [5] Software The Unscrambler v 9.0, Camo Process AS, www.camo.no, Oslo, Norway, 2004.

Acknowledgements

We thank Mag. Roland Kalb for providing the ionic liquid (proionic GmbH, Graz, Austria, www.proionic.com).

Conferentia Chemometrica 2011 – Sümeg, Hungary, 18.-21.9.2011