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Abstract 
 
 
Random projection (RP) is a method for mapping n points from a high-
dimensional space (with m variables) into a low dimensional space 
(with m*<<m new variables) with the Euclidean distances 
approximately preserved. In contrary to principal component analysis 
(PCA) and similar methods, RP uses randomly selected - orthogonal 
or almost orthogonal - projection axes. RP can be computed 
independent from the original data, is computationally very simple, 
fast, and appropriate for large data sets. Successful applications have 
been reported for clustering and classification of textual documents 
and image data (for instance face recognition), as well as for protein 
similarity searches and for data mining. 
 
Basic idea of RP is the fact that high-dimensional vectors with 
randomly chosen vector components are very often "almost 
orthogonal". For instance about 95% of 10,000 randomly generated 
vector pairs (with m=1000, vector components uniformly distributed 
between -1 and 1) have the cosine of the angle between the two 
vectors in the narrow range of -0.062 to 0.062. In other words, in a 
high dimensional space much more "almost orthogonal" vectors than 
orthogonal vectors exist. Published results indicate that RP preserves 
the similarity of data vectors well, eccentric clusters become more 
spherical, and classification results (obtained by k-nearest neighbor 
classification) compare favorably with PCA-transformed data. Thus 
RP is an optional method if the distances in the high-dimensional 
space are meaningful but may be less useful for highly correlating 
variables. 
 
We investigate the applicability and limits of RP with some chemical 
data sets, and compare RP with PCA based on projection pursuit. In 
the latter case, the principal components are computed sequentially 
by maximizing the variance or a robust measure of variance of the 
projected data. Fast algorithms allow a precise estimation of the 
principal components, even for high-dimensional data. 
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Introduction 
 
 
 
 

 
Random projection (RP) is a linear method for a 
projection from a high-dimensional space into a low-
dimensional space, using projection vectors 
(loading vectors) with random numbers as 
vector components. 
 
RP is based on the fact that high-dimensional vectors 
with randomly chosen vector components are very 
frequently "almost orthogonal"*. Some RP methods 
apply orthogonalization of the projection vectors [1-3]. 
 
RP projection generates loading vectors independently 
from the original data, is simple and fast in 
computation, and is appropriate for large data sets. 
Successful applications have been reported for 
clustering and classification of textual documents and 
image data [4-5], as well as for protein similarity 
searches [6]. 
 
We report on preliminary experiments with RP 
 � using artificial data and data from chemistry, 
 � applying RP for cluster analysis,  
 � investigating RP as a data reduction method  
  before KNN classification or PLS calibration. 

 
 

*  Example: About 95% of randomly generated vector pairs (with m = 1000 
dimensions, and the vector components uniformly distributed between -1 and 1, 
10,000 random vector pairs considered) have the cosine of the angle between the 
two vectors in the range -0.062 to 0.062 (86.4° to 93.6°). For m = 200 the 95%-
range is -0.135 to 0.135 (82° to 98°). 
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Introduction 
 
 

 

Generation of Random Projection Vectors 
 

z � normally distributed numbers from e.g. N(0, 1) 
z � uniformly distributed numbers from e.g. U[-1, +1] 
z � fixed values randomly selected from e.g. {-1, 0, +1} 
z Optional orthogonalization (Gram-Schmidt or other) 
z Normalization to unit length 
 
 

Projection Pursuit based PCA (PP) 
 

Principal components are extracted sequentially, by maximizing the 
variance of the projected points on a direction [7]. Two algorithms are 
considered: CR (the potential directions are determined directly by the 
data points), and GRID (iterative grid search in planes). 
 
 
Software 
 

All computations were performed with programs written in R [8].  
For PCA and PP the free R-library "chemometrics" [7, 8] has been used. 
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Projection Methods and Cluster Analysis 

 
 
 
 

Data simulation 
2 classes of objects; n 1 = 800; n 2 = 200 
m = 100 (or 1000) variables, normally distributed, centered ("Gaussians") 
The Gaussians are defined by a covariance matrix Σ, orthog. randomly rotated 

Separation c  of Gaussians:  c = ||μ 1 - μ 2|| / (max (trace Σ1, trace Σ2))0.5  [2] 
        ||μ 1 - μ 2||  is Euclidean distance of centers 

 

Projection methods 
PCA 
PP applied in two versions ("CR" and "GRID") 
RP: ten orthogonalized random projection vectors from U[-1, 1] or N(0, 1)  
 
 
 
 

 
 

Clustering 
k-means clustering, 2 clusters 

Misclassification rate = ratio of objects assigned to the wrong cluster 
 

Simulations  50 repetitions; results presented in box plots 
 
Results for data set 1 

m = 100,  Σ1, with s (j, j) = 1/j 2 (j = 1, ..., m) 
   Σ2, with s (j, j) = 1/m 2 (constant) 

    

      sum of first q variances from projection method 

sum of first q variances from PCA 

c = 1

PCA 

PP 

RP 

Conclusions

PCA, PP and RP yield appr. the 
same misclassification rates, 
however, RP results show a 
much larger variability. 

The separation, c (not shown), 
is conserved in all methods, 
again with a high variability 
for RP.  

Efficiency of variance 
preservation 

=
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Projection Methods and Cluster Analysis 

 
 
 
 
 
 

Results for data set 2 
m = 1000, Σ1, with s (j, j) = 1/j 2 (j = 1, ..., m) 
  Σ2, with s (j, j) = 1/j 2 (j = m, ..., 1) 

 
 

                                  

 
Results for data set 3 

m = 100, Σ1, and Σ2, with s (1,1), ..., s (10,10) = 100 
     s (11,11), ..., s (100,100) = U[0,1] 
  High (and equal) variances in 10 components, 
  very low (and varying) variances in other 90 components.  
  c = 0.6 makes the two Gaussians not separable with 10 PCA components. 

 
 

         
 

 
c = 1 

RP 

PP 

Conclusions

RP is able to ignore the high 
variability directions - just by 
chance - and yields better 
results than PCA or PP, and 
better results than obtained 
with the original data (dashed 
line).  

RP shows advantages only for 
specially designed data sets. 

Conclusions

Efficiency of variance 
preservation is very high for 
PP, but very low for RP (at 
equal runtime). 

Misclassification rates (not 
shown) are near zero for PCA 
and PP; also low for RP but 
with a high variability.  

RP PCA PP 

 c = 0.6 
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Random Projection and KNN 

 
 
 
 

Data 
AMES   n = 6506 compounds used in AMES tests for mutagenicity;  
n 0 = 3004 inactive (class 0), n 1 = 3502 active (class 1); 
m = 1455 molecular descriptors (Dragon software), autoscaled 
 

KNN 
Leave-1-out, Euclidean distance, number of neighbors (k ) varied; 
performance criterion P MEAN = (P 0 + P 1)/2, with P 0 and P 1 the fraction 
correctly classified compounds in class 0 and 1, resp. 
 

Results 
KNN classification has been performed for k = 1, 3, 5, 11, 31, 101, with 
�  all original variables (x1455) 
�  3, 5, 10, 20, 50, 100, 200 random vector scores (RP3, ...) 
�  3, 5, 10, 20, 50, 100, 200 principal component scores (PC3, ...) 
Computing time: 100 RP scores, 3s; 100 PC scores, 200s; KNN with 100 variables 
(RP/PC scores), 30s; KNN with 1455 variables, 2000s. 
 

 Random Projection (RP) - KNN   PCA Projection (PC) - KNN 
 

0.0 0.5 1.0 1.5 2.0
0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.0 0.5 1.0 1.5 2.0
0.50

0.55

0.60

0.65

0.70

0.75

0.80

 
 
 
 
 
 

 
 
 

 

Conclusion 
About 100 random projection scores* yield about the 
same prediction performance as 100 principal component 
scores or all 1455 original variables.  
Optimum number of neighbors is 3 to 5.  
*  RP100 (k = 3): P 1 = 0.740, P 2 = 0.808, P MEAN = 0.774 

PMEAN PMEAN 

log k log k 

x1455 x1455 

RP3 

RP5 

RP10 

RP20 

RP100, RP200 PC100, PC200 

PC3 
PC5 

PC10 
PC20 

RP50 PC50 
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Random Projection and PLS 
 
 
 
 

Data 
ET      n = 166 fermentation mashes, m = 235 NIR absorptions, 
         y  is the glucose content in g/L [9] 
BIO   n = 35 biomass samples (wood, cereals), m = 435 IR absorptions, 
         y  is the heating value in kJ/kg [10] 
TOX  n = 846 compounds from toxicology, m = 529 molecular descriptors  
        (Dragon software), y  is the Kovats GC retention index [11] 

 

Results 
PLS models have been created with the original variables and with scores 
from Random Projection (RP). For evaluation the rdCV strategy (repeated 
double cross validation) was applied [12].  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
[9]  Liebmann B., Friedl A., Varmuza K.: Anal. Chim. Acta, 642, 171-178 (2009). 
[10] Varmuza K., Liebmann B., Friedl A.: University of Plovdiv, Bulgaria, Scientific Papers - Chemistry 35 [5], 5-

10 (2007) ISSN 0204-5346. 
[11] Garkani-Nejad Z., Karlovits M., Demuth W., Stimpfl T., Vycudilik W., Jalali-Heravi M., Varmuza K.: J. 

Chromatogr. A, 1028, 287-295 (2004). 
[12] Filzmoser P., Liebmann B., Varmuza K.: J. Chemometrics, 23, 160-171 (2009). 

Variables for PLS   # SEP a
Original x  235  7.0  9 
RP scores  3  12.2  1 
RP scores  20  9.4  4 
RP scores  100  7.9  8 

Variables for PLS   # SEP a
Original x  435  143  1 
RP scores  3  145  1 
RP scores  20  127  2 
RP scores  100  138  3 

Variables for PLS   # SEP a
Original x  529  86  15 
RP scores  3  270  1 
RP scores  20  195  5 
RP scores  100  126  13 

ET 

BIO 

TOX 

SEP standard deviation of 
20*n  prediction 
errors from test-set 
objects 

a  optimum number of 
PLS components 

Conclusion 
A rather small 
number of RP scores 
(ca 10% of the 
number of variables) 
give a similar - 
usually a somewhat 
worse - prediction 
performance as all 
original variables.  


