Introduction

Comparison of some Linear Regression Methods – Available in R – for a QSPR Problem

Kurt Varmuza 1* and Peter Filzmoser 2

Vienna University of Technology

¹ Laboratory for Chemometrics, Institute of Chemical Engineering, Vienna University of Technology Getreidemarkt 9/166, A-1060 Vienna, Austria kvarmuza@email.tuwien.ac.at, www.lcm.tuwien.ac.at ² Institute of Statistics and Probability Theory,
Vienna University of Technology
Wiedner Hauptstrasse 8-10,
A-1040 Vienna, Austria
P.Filzmoser@tuwien.ac.at,
www.statistik.tuwien.ac.at/public/filz

Poster Presentation:

4th German Conference on Chemoinformatics / 22nd CIC-Workshop

Goslar, November 9-11, 2008

A chemical/physical/biological property y of chemical compounds can be modeled by a set of molecular descriptors x_j derived from the chemical structures.

In a **linear regression model** we estimate *y* by

 $\hat{y} = b_0 + b_1 x_1 + b_2 x_2 + \dots + b_m x_m$

using *m* regressor variables.

The regression coefficients b_1, \ldots, b_m and intercept b_0 are estimated using a data set $X(n \times m)$ and $y(n \times 1)$.

For highly correlating *x*-variables and/or m > n the traditional OLS (ordinary least-squares) regression method cannot be used. Alternatives are for example

- PLS (partial least-squares) regression
- robust PLS regression
- PCR (principal component regression)
- Ridge regression
- Lasso regression

All these methods are available in the free software system \mathcal{R} [1] by the package "chemometrics" [2].

This package includes the function "mvr_dcv" [3] for repeated double cross validation (RDCV), comprising

- selection of an optimal model complexity of PLS models [4], and
- **O** careful evaluation of the prediction performance.

Methods (1)

PLS and robust PLS regression

Replace *X* in the original model

y = Xb + eby **latent variables** T of lower dimension, such that $X = TP^{T} + E$

Consider the regression model for y on T,

 $\mathbf{y} = \mathbf{X}\mathbf{b} + \mathbf{e} = (\mathbf{T}\mathbf{P}^{\mathsf{T}})\mathbf{b} + \mathbf{e}_{\mathsf{T}} = \mathbf{T}(\mathbf{P}^{\mathsf{T}}\mathbf{b}) + \mathbf{e}_{\mathsf{T}} = \mathbf{T}\mathbf{g} + \mathbf{e}_{\mathsf{T}}$

and estimate the coefficients g.

 $t_1, ..., t_a$ are the columns of T, and they are obtained sequentially by

cov($X w_j, y$) \rightarrow max under $||t|| = ||X w_j|| = 1$ and orthogonality constraints.

Using for "cov" a robust estimator like the M-estimator [5] results in **robust PLS**, see [6].

PCR

Like for PCR a latent variable model is used,

$$y = Tg + e_T$$

with a < m regressor variables $t_1, ..., t_a$. These are taken as the first *a* principal components (PCs) of *X*. Using robust PCs results in **robust PCR** [2].

Ridge and Lasso regression

Minimize the sum of squared residuals,

$$(\boldsymbol{y} - \boldsymbol{X}\boldsymbol{b})^{\mathsf{T}}(\boldsymbol{y} - \boldsymbol{X}\boldsymbol{b}) \rightarrow \min$$

under

$b_1^2 + \ldots + b_m^2$	< const	Ridge regression
$ b_1 + + b_m $	< const	Lasso regression

Ridge regression gives an explicit solution for the regression coefficients, $\boldsymbol{b}_{RIDGE} = (\boldsymbol{X}^{T}\boldsymbol{X} + \lambda_{R}\boldsymbol{I})^{-1}\boldsymbol{X}^{T}\boldsymbol{y}$.

Lasso regression has to be solved by an optimization routine. Depending on the size of "const", some of the regression coefficients are exactly zero. Thus, Lasso regression acts like a **variable selection method**.

Usage within ${\cal R}$

PLS:	plsr	in library(pls)
rob. PLS:	prm	in library(chemometrics)
PCR:	pcr	in library(chemometrics)
Ridge:	lm.ridge	in library(MASS)
Lasso:	lars	in library(lars)

Further, and more sophisticated evaluation schemes are in the library "chemometrics", see the help file [2].

3

Application (1)

QSPR example

- *n* = **209 polycyclic aromatic compounds**, 3D, all H-atoms; *Corina* [7]
- y gas-chromatographic retention indices, Lee indices [8]
- *X* $m_1 = 467$ molecular descriptors; *Dragon* [9] $m_2 = 13$ descriptors selected by a genetic algorithm; *MobyDigs* [10]
- \mathcal{R} : data(PAC) # load data from library chemometrics

PLS

A single cross validation can give misleading results. Repeated double cross validation (or bootstrap) is recommended.

5

CIC08 poster regression 081117a.doc

Application (2)

Robust PLS

Evaluation: 10-fold CV

```
Result:
```

optimal number of PLS components is 21 (trimmed SEP)

Ridge regression

Evaluation: Result: generalized cross validation (GCV, an approx. leave-1-out) optimal Ridge parameter (λ) is 4.3, see *x*-axis in plots

R: res_rid <- plotRidge(y~X,data=PAC,lambda=seq(0.5,50,by=0.05))</pre>

Application (3)

Lasso regression

Resulting model: Plot shows the regression coefficients depending on the size constraint β (horizontal axis); for β_{OPT} , 332 coefficients are exactly zero.

R: res_coef <- lassocoef(y~X,data=PAC,sopt=res_lasso\$sopt)</pre>

Summary

Comparison of results

Method	<i>m*</i>	а	SEP _{TEST}	SEP 0.2		
PLS	467	11	12.2	5.7		
PLS	13	9	8.0	4.7		
Robust PLS	467	21	-	6.2		
PCR	467	21	14.2	7.9		
Ridge regression	467	-	-	<mark>4.0</mark>		
Lasso regression	145	-	-	5.0		
m^* number of variables in the final model						

number of PLS/PCR components

- SEP_{TEST} SEP from repeated double cross validation
- SEP^{0.2} SEP with 20% trimming of largest absolute residuals

A fair comparison with robust methods is only possible with the **trimmed SEP**^{0.2} which excludes potential outliers.

For this data set, **Ridge regression** results in the best prediction model with a SEP^{0.2} of 4.0. PLS with 13 GA-selected variables and Lasso regression with 145 variables have a similar performance with a SEP^{0.2} of 4.7 and 5.0, respectively.

References

а

- R: software, a language and environment for statistical computing. R Development Core Team, Foundation for Statistical Computing, www.r-project.org, Vienna, Austria, 2008.
- [2] Varmuza K., Filzmoser P.: Introduction to ultivariate statistical analysis in chemometrics, CRC Press, Boca Raton, FL, USA, in print (2009).
- [3] Filzmoser B., Liebmann B., Varmuza K.: submitted (2008).
- [4] Our R function "mvr_dcv" uses a PLS package, described by Mevik B.H. and Wehrens R., J. Stat. Software 18 (2007) issue 2, 1-24.
- [5] Maronna R., Martin D., Yohai V.: Robust statistics: Theory and methods. Wiley, Toronto, ON, Canada (2006).
- [6] Serneels S., Croux C., Filzmoser P., Van Espen P. J.: Chemom. Intell. Lab. Syst. 79 (2005) 55-64.

[7] Corina software, Molecular Networks GmbH Computerchemie, www.mol-net.de, Erlangen, Germany (2004).
[8] Lee M.L., et al., Anal. Chem. 51 (1979) 768-773.

- [9] Dragon software, 5.0, Talete srl, www.talete.mi.it, Milan, Italy (2004).
- [10] MobyDigs software, 1.0. Talete srl, www.talete.mi.it, Milan, Italy (2004).

Acknowledgment. This work was partly founded by the Austrian Research Promotion Agency (FFG), BRIDGE program, project no. 812097/11126.

7