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Introduction 
 
 
 
 

 
The performance of multivariate regression models 
 

   ŷ  = b 0  +  b 1 x1  +  b 2 x2  +  ...  +  bm xm  
 

obtained from a data set X (n × m ) and y (n × 1) 
can be estimated from 

z a reasonable large number (z ) of prediction errors 
  (residuals) ŷ i - yi  (i = 1 ... z ), 
z obtained from objects not used in model  
  development and model optimization (test sets). 
 
For data sets with a rather small number of objects, a 
single random split into a calibration set and a test set 
may give very misleading results. 
 
Much better approaches are 
  � repeated double cross validation (RDCV) 
   (used in this contribution), or 
  � bootstrap. 

 
RDCV is used here  

) to estimate the optimum complexity of linear  
 regression models (number of PLS components), 

) to estimate the prediction errors to be expected  
 for new objects - using models that are derived  
 from the considered data set. 
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Method 
 
 

 
Repeated double cross validation (RDCV) 

 

RDCV applies cross validation in three nested loops:  
In an outer loop the available n objects are randomly 
split into a test set and a calibration set.  
In an inner loop cross validation is applied to the 
calibration set to find the optimum number of PLS 
components, aOPT. A model with aOPT components is 
then calculated from all data of the calibration set and 
is applied to the test set giving test-set-predicted 
values ŷ  for the current test set.  
After completing the outer loop, for each of the n  

objects a test-set-predicted value ŷ  is available.  
This procedure is repeated k  times, giving z = k.n  

values ŷi  and z  residuals ŷ i - yi . Each object has been 
used k  times in a test set. 
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Algorithm 

 
 

 
Repeated double cross validation (RDCV) 

 
 FOR rep = 1 TO k  (number of repetitions) 

  � Split all n objects randomly into sOUT  segments (typ. 3-7) 

  � FOR loop_out = 1 TO sOUT 

     � test set = segment with number loop_out (nT objects) 
    calibration set = other sOUT - 1 segments (nC objects) 

     � Split calibration set into sIN segments (typ. 3-7) 

     � FOR loop_in = 1 TO sIN 

      � validation set = segment with number loop_in 
     training set = other sIN - 1 segments 

      � Make PLS models from the training set, 
     with a = 1, 2, ..., aMAX  components 

      � Apply the PLS models to the validation set: 
             giving ŷCV  for the segment loop_in, for a = 1, 2, ... 

    NEXT loop_in 

     � Estimate optimum number of components from ŷCV,j  
    ( j = 1 ... nC ), giving aOPT (loop_out ) for this outer loop 

     � Make a PLS model for the whole calibration set using 
    aOPT (loop_out ) components 

     � Apply the model to the test set: 
    giving test-set-predicted ŷTEST  for nT  test set objects 

   NEXT loop_out 

  � After completing the outer loop: 
   we have one test-set-predicted ŷTEST  for each of the n objects 

 NEXT rep  
 
 
 

RDCV is freely available by the function mvr_dcv in the new 
package chemometrics for the R programming system [1, 2]. 

 
 

repetition
loop 

outer
loop 
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inner
loop 
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Evaluation 
 
 

 
RDCV yields 

 �  w = k . sOUT   values for the optimum no. of components 

 �  z = k.n    test-set-predicted values ŷi   ( i = 1 ... z ) 

  k    number of repetitions 
  n    number of objects 
  sOUT   number of segments in outer loop 

 
A final optimum number of PLS components, aOPT , can be 
estimated from the RDCV results e.g. as follows. 

 � aOPT  is the number of components most often obtained in  
  the k . sOUT  estimations (see application). 
 � Depending on the shape of the frequency distribution,  
  more than one value for aOPT  should be considered. 

A final model is calculated from all n  objects 
using the final optimum number of components. 

 
The prediction performance of the final model can be 
estimated from the RDCV results as follows.  

 � SEPTEST  is the standard deviation of all z  residuals;  
  SEP is often called "standard error of prediction". 

 � Results from the k repetitions give k  values SEPTEST (rep ),  
  characterizing the variability of SEPTEST . 

 � The distribution of all z  residuals gives a good picture of 
  the prediction errors to be expected for new cases. 

  E.g. the quantiles at 0.025 and 0.975 define a  
  95% tolerance interval; for a (usually) normal distribution  
  of the residuals it is approximately given by + 2 SEPTEST 
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Application 
 
 

 
QSPR example 
n = 209 polycyclic aromatic compounds, 3D, all H-atoms; Corina [3] 
y    gas-chromatographic retention indices, Lee indices [4] 
X    m 1 = 467 molecular descriptors; Dragon [5] 
      m 2 =   13 descriptors selected by a genetic algorithm; MobyDigs [6] 
RDCV:   7 and 4 segments in outer and inner loop, resp.; k = 100 repetitions 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

A single cross validation may give very misleading results. 
Repeated double cross validation (or bootstrap) is recommended. 
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