An automatic pipeline processing software for secondary ion time-of-flight mass spectra of Rosetta/COSIMA

H. Krüger¹, C. Briois², C. Engrand³, H. Fischer¹, M. Hilchenbach¹, J. Kissel¹, P. Martin², J. Rynö⁴, T. Stephan⁵, L. Thirkell², R. Thomas², K. Varmuza⁶, and the COSIMA science team

¹ Max-Planck-Institut für Sonnensystemforschung, 37191 Katlenburg-Lindau, Germany ² Laboratoire de Physique & Chimie de L'Environment, 45071 Orléans, France ³ Institut D'Astrophysique, Faculté des Sciences d'Orsay, 91405 Orsay, France ⁴ Finnish Meteorological Institute, Erik Palménin aukio 1, 00560 Helsinki, Finland ⁵ University of Chicago, Department of the Geophysical Sciences, Chicago, IL 60637, USA ⁶ Labor Chemometrie, Institut für Verfahrenstechnik, Umwelttechnik und Technische Biowissenschaften, Technische Universität Wien, 1060 Wien, Austria

COSIMA instrument in-flight configura

Abstract

The COmetary Secondary Ion Mass Analyser (COSIMA) on board the Rosetta orbiter will collect and analyse dust grains in the coma of comet 67P/Churyumov-Gerasimenkov beginning in 2014. COSIMA is a high-resolution time-of-flight mass spectrometer (m/ Δ m \approx 2000 at m = 100 amu; from FWHM; [2]). We expect to obtain thousands of COSIMA mass spectra during the entire Rosetta mission at the comet. In order to be able to handle and efficiently evaluate such a large amount of data, we develop an automatic data processing software. The resulting data is a peak list, giving – for each peak identified in the spectrum – peak intensity, exact mass, suggested ion species, etc. This peak list will serve various purposes: 1) identification of interesting spectra for subsequent more detailed evaluation; 2) input for statistical multivariate analyses (e.g., Corico, Principal Component Analysis [1]); 3) input for further automatic data processing, like, e.g., intensity maps from COSIMA raster scans. We present the current status of our pipeline software and show examples for its application to COSIMA laboratory spectra.

Overview

- After Rosetta's arrival at comet 67P/C-G in 2014, COSIMA will produce thousands of mass spectra.
- Automatic data processing will be required to manage this large amount of data (Figure 1).
- Mass calibration, dead time correction, background removal and removal of instrumental artefacts can be performed automatically.
- Single and double peaks can be identified from FWHM/ $\sqrt{(m)}$ (*m* being the peak mass) obtained from a Gaussian fitted to the peak profile (Figure 2).
- Deconvolution of double peaks is rather straighforward for resolved double peaks (Figure 3).
- Peak lists are generated, containing exact mass, line intensities, etc. (Figure 4).
- Peak list serves as quick-look data and as input for higher level data processing, e.g., maps (Figure 5) or multivariate statistical techniques [1].

Start from raw spectrum

COSIMA Peak Width

Figure 2: The FWHM/ \sqrt{m} from fitting a Gaussian curve to peaks in the mass range 1 to 400 amu is used to identify single and double peaks in the COSIMA spectra. The reference line for single peaks (dashed red line) is defined by a list of 'standard' peaks: masses 12, 13, 14, 23, 24, 52, 73, 115, 147, 148, 197, 255 amu (positive ion mode); 1, 13, 16, 17, 25, 35, 37, 163, 197 amu (negative ion mode).

IIS FILE CREATION TIME = Mi 18 Jun 2008 14:19:21 CEST

MAGG GAI			- 203						
MASS CALIBRATION = 8 lines									
MASS CALIBRATION LINES = H, C, CH3, Na, S1(CH3)3, In, S120(CH3)5, Au,									
MASS CALIBRATION ERROR = 1.4758038e-05									
MASS CALIBRATION A = 1586.9969 B = 4064.2398									
DEADTIME CORRECTION = APPLIED									
BACKGROU	UND CORRE	CTION	= APP	LIED					
Mass	=	Line mas	s (amu)						
Mass_err = Uncertainty in mass determination (amu)									
I_l = Line intensity (total counts)									
I_b = Average background intensity (per channel) subtracted									
I_l/I_tot = Line intensity/total intensity									
LF = Line deconvolution; s1/s2/d1/d2: two peaks deconvolved; xx: no deconvolution									
Ion Spea	cies =	Possible	ion spe	cies a	and delta m ir	n amu			
Mass #	Mass	Mass_err	I_l	I_b	I_l/I_tot LF	Ion Specie	s delta m	Ion Species	delta m
1	1.0112	0.0010	74719	92	7.75e-03 s1	1H	0.0039449138		
2	2.0192	0.0011	939	12	9.74e-05 s1	1H2	0.0041418912	2Н	0.005690177
3	3.0265	0.0010	206	11	2.14e-05 s1	1H3	0.0035807376		
б	6.0272	0.0020	104	11	1.07e-05 sl	6Li	0.012595400		
7	7.0111	0.0036	742	14	7.70e-05 sl	7Li	-0.0043650215		
10	10.0104	0.0019	392	12	4.07e-05 sl	10B	-0.0020274664		
11	11.0069	0.0020	1330	15	1.38e-04 sl	11B	-0.0018561065		
12	11.9983	0.0012	12133	48	1.26e-03 sl	12C	-0.0011736085	24Mg2+	0.006305441
13	13.0051	0.0016	10443	43	1.08e-03 s1	12C_1H	-0.0021625987	13C	0.002307593
14	14.0147	0.0006	18848	43	1.96e-03 sl	12C_1H2	-0.00036030304		
15	15.0230	0.0017	28625	45	2.97e-03 sl	12C_1H3	7.8521853e-05	14N_1H	0.01265457
16	16.0209	0.0050	547	15	5.67e-05 xx	14N_1H2	0.0026829917	13C_1H3	-0.005422870
17	17.0040	0.0002	198	14	2.06e-05 sl				
18	18.0325	0.0012	279	16	2.90e-05 sl	14N_1H4	-0.0013751865		
19	19.0141	0.0002	448	15	4.65e-05 sl				
20	19.9823	0.0056	48	13	4.97e-06 xx	40Ca_2*	0.0015496413		
23	22.9888	0.0004	645732	1487	6.70e-02 sl	23Na	-0.00037483127		
24	23.9843	0.0024	41477	91	4.30e-03 s1	24Mg	-0.00017966539	48Ca_2*	0.008595234
25	24.9883	0.0027	11004	49	1.14e-03 s1	25Mg	0.0029901301	24Mg_1H	-0.004039779
26	26.0128	0.0064	17153	70	1.78e-03 xx	12C2_1H2	-0.0022740057	25Mg_1H	0.01971400
27	26.9794	0.0024	82451	257	8.55e-03 d1	27Al	-0.0016375152	26Mg_1H	-0.01051714
27	27.0186	0.0033	54932	257	5.70e-03 d2	12C2_1H3	-0.0042844480	26Mg_1H	0.02877257
28	27.9768	0.0025	352188	665	3.65e-02 sl	28Si	0.00045922510		
29	28.9789	0.0039	102019	268	1.06e-02 sl	29Si	0.0029123899	28Si_1H	-0.005344452
29	29.0332	0.0045	35942	268	3.73e-03 s2	12C2_1H5	-0.0054195480	12C_160_1H	0.03096596
30	29.9778	0.0025	15915	84	1.65e-03 s1	30Si	0.0045843666	29Si_1H	-0.005965165
30	30.0399	0.0055	2246	84	2.33e-04 s2				
31	30.9937	0.0070	11703	78	1.21e-03 xx	30Si_1H	0.012633951	31P	0.02046769
32	31.9980	0.0029	373	40	3.87e-05 s1	32S	0.026438805		
33	32.9893	0.0042	121	41	1.26e-05 s1				

Figure 4: Sample peak list generated from a COSIMA spectrum.

Future Improvements

- Extensive testing required!
- Peak profiles of TOF-SIMS instruments are well-known for being non-Gaussian shaped. Peak fitting with a "standard" profile derived from the spectrum itself (e.g., lines used in Figure 2) will be tested.
- Deconvolution of unresolved double peaks.

Figure 1: Simplified flow chart for COSIMA spectra processing.

Figure 3: Examples of peaks fitting. *Left three columns:* Single peaks and clearly resolved double peaks with Gaussian fitted to the stronger component. Right three columns: Residual lines after removal of the stronger component of the double peak and Gaussian fitted to the residual.

COSIMA Raster Maps

- Assignment of ion species: consider isotopic ratios, potential hydride contributions, organic compounds, etc. to improve peak assignment [3].
- Improve removal of instrumental artefacts (e.g., non-linearity correction for TDC, improved background determination).

Contact: krueger@linmpi.mpg.de

References

- [1] C. Engrand, et al., Chemometric evaluation of time-of-flight secondary ion mass spectrom etry data of minerals in the frame of future in situ analyses of cometary material by COSIMA onboard ROSETTA. Rapid Communications In Mass Spectrometry, 20:1361–1368, 2006.
- [2] J. Kissel, et al., Cosima A High Resolution Time-of-Flight Secondary Ion Mass Spectrom eter for the Analysis of Cometary Dust Particles onboard Rosetta. Space Science Reviews, 128:823-867, 2007.
- [3] T. Stephan, TOF-SIMS in cosmochemistry. Planetary and Space Science, 49:859–906, 2001.
- [4] T. Stephan, et al., Correction of dead time effects in time-of-flight mass spectrometry Journal of Vacuum Science and Technology, 12(2):405-410, 1994.

This poster was processed with PDFIATEX.

Figure 5: COSIMA raster maps generated from peak lists (in colour) and an optical image (*bottom right panel*). The measurements were taken on synthetic forsterite (Mg_2 Si O₄) prepared on a blank gold substrate. Left two columns: Positive ion mode; Intensities of ²³Na and ¹⁹⁷Au, intensity ratios ²⁸Si/¹⁹⁷Au, and ²⁴Mg/²⁸Si. Third column and top right panel: Negative ion mode; Intensities of ¹⁹⁷Au and intensity ratios ¹⁶O/²⁸Si and ²⁸Si/¹⁹⁷Au. High intensities or intensity ratios are shown in red while low values are shown in blue. In the intensity ratios the sample is easily identified as the location with the highest ratio, while in the intensity maps the highest signal comes from the gold substrate.