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1. Motivation

Biomass is becoming increasingly important as a renew-
able source of energy. Apart from traditional incineration
of wood, recent developments also consider the incinera-
tion of cereals.
Spectroscopy is a promising alternative to time-consuming
calorimetric experiments for determining an important prop-
erty of a fuel: its heating value.
This study aims at developing PLS calibration models for
the prediction of higher heating values of wood and cereal
samples, based on infrared and near-infrared data.

2. Experimental

2.1 Samples
20 wood samples: sawdust of spruce, pine and larch with
varying amounts of additives (bark, rye/maize flour, starch)
15 cereal samples: wheat, rye, barley, maize and triticale
flours

2.2 Instrumentation
Four different set-ups for spectroscopic measurements:

A. NIR-spectrometer with sapphire ball probe
(Brimrose Luminar 5030)

B. NIR-spectrometer with rotating sample cup
(Brimrose Luminar 5030)

C. VIS-NIR-spectrometer with Direct Contact Analyser
(Foss NIRSystems 6500)

D. IR-spectrometer with ATR-Durascope sampler
(Bruker Equinox 55)

2.3 Data

NIR absorbance data (A. - C.): 1100-2300 nm, ∆λ = 8 nm,
1st derivative Savitzky-Golay, resulting in p = 145 features

IR absorbance data (D.): 4000-600 cm−1, ∆ν = 8 cm−1,
1st derivative Savitzky-Golay, resulting in p = 435 features

Heating values: The higher heating value in kJ/kg dry
biomass is determined by the bomb calorimetric
method [1], range: 18,143-19,125 kJ/kg

3. Chemometrics

3.1 Variable Selection
Variable selection by Genetic Algorithm (GA) using soft-
ware MobyDigs [2]

• regression method: OLS

• performance criterion (fitness): R2
adj , adjusted squared

correlation coefficient between y and ŷ for full cross vali-
dation [3]

• max. number of features selected in a model: 15

• number of iterations per trial: 1-1.4 million

• typical computation time: 60-120 minutes

• use variables present in the 10 best models

3.2 Repeated Double Cross Validation
for prediction performance of PLS Models

Application of new software developed in R [4,5].

• The data set is randomly partitioned into s = 4 segments:
3 segments for calibration, 1 segment as test set.

• A PLS model is derived from the calibration set with op-
timum number of PLS components estimated by cross-
validation.

• Application of PLS model to test set results in n/s pre-
dicted values ŷi.

• Systematic variation gives a ŷ for each object.

• The whole process is repeated k = 10 times.

• Finally, k ·n = 10·35 = 350 values ŷ are available.

Performance criteria derived from prediction errors:
SEPtest standard deviation of prediction errors
TI90 tolerance interval of prediction errors

(difference of 95 % and 5 % percentile)
PCmed median of s·k calculated optimum numbers of

PLS components

3.3 Full Cross Validation
for prediction performance of PLS Models

For reference, PLS regression as implemented in software
Unscrambler [6] has been performed.
SEPCV standard deviation of prediction errors

by full cross validation (leave-one-out)
PCopt optimum number of PLS components given

by software

4. Results

Table 1: Prediction performance of PLS models using
all features of NIR (A.-C.) and IR data (D.)

data set p SEPtest PCmed SEPCV PCopt

A. 145 141 1 124 4
B. 145 115 6 102 5
C. 145 89 5 87 8
D. 435 141 3 137 2

Table 2: Prediction performance of PLS models using
GA selected features of NIR (A.-C.) and IR data (D.)

data set p SEPtest PCmed SEPCV PCopt

A. 19 96 14 62 14
B. 21 94 10 56 17
C. 20 96 11 70 10
D. 19 48 13 62 7

p number of features
PC number of PLS components (med. median, opt. optimum)
SEP standard deviation of prediction errors (in kJ/kg)
SEPtest test sets in repeated double cross validation (10 repetitions)
SEPCV leave-one-out cross validation

prediction errors

fr
eq

ue
nc

y

−300 −100 0 100 200 300

0
20

40
60

80
10

0

TI90 =

144 kJ/kg

( a ) IR data (D.)

prediction errors

fr
eq

ue
nc

y

−300 −100 0 100 200 300

0
20

40
60

80
10

0

TI90 =

326 kJ/kg

( b ) NIR data (A.)

Figure 1: Frequency distribution and tolerance interval of
prediction errors of PLS models using 19 features of (a) IR
data (best model) and (b) NIR data
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Figure 2: Prediction of higher heating values (kJ/kg) by a
PLS model using 19 IR absorbances selected by a ge-
netic algorithm. The predicted values are means from 10
replicates of double cross validation.

5. Conclusions

• Easily available (Near-)Infrared spectroscopy data are
very promising for the determination of heating values of
biomass.

• Variable selection by Genetic Algorithm improves predic-
tion performance in most cases, especially for IR data.

• Differences in prediction quality due to instrumental set-
up (NIR data) decrease after variable selection.

• A single PLS-model can be used for the heating value of
wood as well as cereal samples.

• Simple leave-one-out cross validation tends to give too
optimistic results, which can be misleading for variable
selection.

• Repeated double cross validation allows realistic estima-
tion of prediction performance.

• Implementation of repeated double cross validation in
software R is fast with typical computation times of 10
seconds per job.
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