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Introduction 

Different spectroscopic methods play an important role for the identification 
and structural interpretation of unknown chemical compounds. In organic 
analytical chemistry mass spectrometry (MS), infrared spectroscopy (IR) and 
nuclear magnetic resonance spectroscopy (NMR) supply most of the 
information for this task. 

In a mathematical sense a spectrum is a multivariate signal - that means a 
series of single measurement values - for one compound. In multivariate data 
analysis such a series of values can be imagined as a point in a 
multidimensional data space spanned by these measurement variables. 

Exploratory data analysis of multivariate spectral data is often done by linear 
mapping methods enabling the human visual exploration and the 
interpretation of clustering and class separation. Mostly principal component 
analysis (PCA) is used for mapping purposes. As a major disadvantage of the 
variance-maximizing properties of PCA  the mapping structure can be 
dominated by parts of the spectral data that show no or only weak 
correlations to the chemical structure.  

A "partial-least-squares" (PLS) based mapping can be utilized to overcome 
this drawback. Spectral features are applied as x-variables and binary 
structural descriptors as y-variables. The result of this method are two sets of 
pairwise correlated latent variables which can be used to span corresponding 
projection planes from both data spaces. 



Spectral X-Variables 

IR spectroscopy 

The infrared spectra used in this work are peak tables. Calculation of "fuzzy" 
wavenumber interval sums" (FWIS) 1 has been applied in this work to 
consider the "fuzziness" of the IR peak position of related compounds. 

 
13C-NMR spectroscopy 

"Fuzzy chemical shift interval sums" (FCSIS) are calculated in analogy to 
the concept in IR spectroscopy. Five different sets of FCSIS can be 
calculated considering either all peaks, or only singulets, doublets, triplets or 
quartets. 

Mass spectrometry 

Fragmentation pathways are very complex and sensitive to little structural 
changes. It is often difficult to formulate a direct and always existing relation-
ship between a structural element and a spectroscopic signal as possible in 
13C-NMR and IR spectroscopy. Therefore more complex calculations have 
been applied to get "spectral features" in mass spectrometry 2: 

modulo-14 spectra 
autocorrelation spectra 

logarithmic intensity ratios 

Structural Y Variables 

In this work binary structural descriptors are applied to transform chemical 
structures into numerical variables. To derive binary descriptor variables a set 
of substructures or structural categories is defined. If a substructure is 
present in the compound, the binary descriptor value is set to 1, if the 
substructure is absent, the value is set to 0. 

Atom-centered "HOSE code" substructures3 are used as binary structural 
descriptors: HOSE codes can cover the whole chemistry and such 
substructures are terms which are easy to interprete for the chemist.  



PLS mappings 

PLS is a special case of a common principle to calculate vectors spanning a 
mapping plane in data space. This common principle is the decomposition of 
the data matrix into latent variables: 

 X = T PT + E (1) 

A decomposition equation similar to (1) can be formulated for the block of the 
y variables: 

 Y = U QT + F (2) 

Equations (1) and (2) are called "outer relationships" and are linked together 
with the "inner relationship":  

 U = T B + H (3) 

It is interesting and informative to compare the role of the error residual 
matrices E, F and H within three different latent variable methods: principal 
component analysis (PCA), canonical correlation analysis (CCA) and partial-
least-squares (PLS). In PCA only outer relationships influence the result 
minimizing independently E and F. In CCA only the inner relationship is 
important minimizing the regression error H. PLS takes account of both outer 
and inner relationships minimizing E, F and H simultaneously. 

For a PLS mapping as a two-dimensional data model the inner relationship 
(3) can be formulated into two vector equations: 

 u1= b1 t1 + h1 (4) 
 u2= b2 t2 + h2  (5) 

In a simplified view x data space mappings of CCA and PLS can be seen as 
an estimate of the y-mapping with an certain error. Ideally objects would have 
the same position in both mappings after scaling the x scores with the 
regression coefficients. The differences between the positions are the two-
dimensional residual vectors h1 and h2. 

There exists no comparable geometric connection between the PCA 
mappings of x and y data space, because the regression residual matrix H 
plays no role in the calculation of the principal components. 

Considering the PLS y-mapping of the structural descriptors, the position of 
the objects is directed by correlations to spectral variables and can reveal 
structural clusters relevant in spectroscopic terms. 
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The structural map  
is an estimate  

of the spectral map  
(and vice versa). 

Different spectroscopic 
methods (and particularly 
different spectral features) 
lead to different structural 

maps = projection planes in 
structural data space. 
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Loading interpretation 

    

 mass spectral map mass spectral loadings 

Conclusions 

Finding "structural similarity clusters" (contiguous regions in a mapping 
dominated by objects of one chemical structure class) is a major step for the 
detection of relevant spectra-structure-relationships. Interpretation of the 
loadings of the latent variables of both data spaces can then reveal spectral 
reasons for clustering and for separation of structure classes. For a complete 
utilization of a PLS mapping all four available plots (spectral and structural 
map as well as the corresponding loading-loading-plots) should be examined 
in common. 
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