Prediction of gas chromatographic retention indices of toxicologically relevant compounds

Zahra GARKANI-NEJAD¹, Manfred KARLOVITS² Wilhelm DEMUTH², Thomas STIMPFL³ Walter VYCUDILIK³, Mehdi JALALI-HERAVI⁴ Kurt VARMUZA^{2*}

Valie Asr University of Rafsanjan, Faculty of Science, Rafsanjan, Iran

- Vienna University of Technology, Institute of Chemical Engineering, Laboratory for ChemoMetrics, Vienna, Austria
- University of Vienna, Institute of Forensic Medicine, Vienna, Austria
- Sharif University of Technology, Department of Chemistry, Tehran, Iran

* Presenting author kvarmuza@email.tuwien.ac.at www.lcm.tuwien.ac.at Austrian Science Fund, project P14792-CHE Acknowledament

Page 1/6

Poster Presentation: Advances in Chromatography and Electrophoresis -Conferentia Chemometrica (ACE & CC 2003) 27 - 29 October 2003, Budapest, Hungary

Data

Rltox-poster-Budapest-2003-i.doc 2003-10-15

Prediction of GC retention indices

Data				
Database: Mass spectra and GC data of drugs, etc. $\ensuremath{\left[2\right]}$				
Selection of compounds (structure, <i>RI</i> available*)				
846 organic compounds **: 2D-structures (Molfiles), <i>RI</i>				
Software WebLab Viewer [3] (2D → 3D)				
846 compounds with very approximate 3D-structures and explicit H-atoms (Molfiles)				
Software DRAGON [4] (generation of molecular descriptors)				
1497 molecular descriptors for each structure				
Basic feature selection (elimination of constant, extreme, and highly correlating features)				
529 descriptors for each of the 846 structures				
Multivariate data: X (846 * 529) descriptors				
y (846 * 1) RI				
 <i>RI</i>, Kovats retention index Hypnotics, insecticides, tranquilizers, analgesics,, <i>n</i>-alkanes C₁₄ - C₃₀, molecular masses 109-491; <i>RI</i> between 1110 and 3870. 				
 K. Pfleger, H. H. Maurer, A. Weber: Mass spectral and GC data of drugs, poisons, pesticides, pollutants and their metabolites, 2nd ed. VCH, Weinheim, Germany, 1992. Software WebLab Viewer. Accelrys Inc., San Diego, CA, www.accelrys.com, 2002. R. Todeschini, V. Consonni, A. Mauri, M. Pavan: Software Dragon. University of Milano-Bicocca, and Talete srl., disat.unimib.it/chm/Dragon.htm, 2003. 				
Rltox-poster-Budapest-2003-i.doc 2003-10-15 Prediction of GC retention indices Page 3 /				

Introduction

With 846 organic compounds,

- - most of them relevant in forensic GC-MS analyses, and
- possessing very diverse chemical structures -

multivariate calibration models

have been developed to predict

Kovats GC retention indices from molecular descriptors

Strategy

Straight forward application of widely used and easily available methods from computer chemistry and chemometrics.

Aim

Development of a tool that supports the identification of unknowns in forensic analyses by GC-MS.

Prediction of GC retention indices

Ritox-poster-Budapest-2003-i.doc 2003-10-15

Methods

Feature Selection

- Selection of features possessing highest correlation coefficients with RI
- Stepwise forward feature selection together with MLR/OLS (software Systat).

Multivariate Calibration

- PLS, PCR, MLR/OLS, ANN (Software Unscrambler, Systat, and ANN [5])
- Training set 700 compounds, prediction set 146 compounds
- Cross validation for PLS and PCR with training set using 10 segments.

Evaluation

SEP, standard error of prediction

Mean of 4 experiments with different random samples for training and prediction set.

[5] M. Jalali-Heravi, Z. Garkani-Nejad: J. Chromatogr. A, 927, 211-218 (2001). Prediction of electrophoretic mobilities of sulfonamides in capillary zone electro-phoresis using artificial neural network.

Stimpfl T., Demuth W., Varmuza K., Vycudilik W.: J. Chromatogr. B, 789, 3-7 (2003). Systematic toxicological analysis: computer-assisted identification of poisons in biological materials.

Page 2/6

Results

Method	No. of descriptors	Selection method	No. of components	SEP
PLS	529	-	15	₩ 3 82
	100	max. corr.	20*	119
	15	stepwise	8	💥 79
PCR	529	-	20*	133
	100	max. corr.	20*	159
	15	stepwise	15	🔆 79
MLR/OLS	100	max. corr.	-	125
	15	max. corr.	-	156
	15	stepwise	-	79
ANN**	15	stepwise	-	💥 ca 72

* No optimum in cross validation, 20 components used.

 Training of backpropagation neural network with 700 objects, optimization (validation) with 100, prediction with 46 objects.

Best models 🛛 💥

RItox-poster-Budapest-2003-i.doc 2003-10-15

- PLS with all 529 descriptors (quick model building).
- MLR/OLS (or PLS or PCR) with 15 descriptors obtained by <u>forward stepwise selection by MLR/OLS</u> (slow, easily interpretable model).
- ANN (very slow, not yet extensively verified).

Prediciton errors are rather high, probably because of the very diverse structures, crude 3D-structures, and varying GC conditions for retention indices in the used database.

Prediction of GC retention indices

Page 5/6

Results

Predicted versus experimental RI for prediction set

Model created from 700 compounds by MLR/OLS and forward stepwise feature selection (15 features/descriptors selected). Prediction set with 146 compounds; SEP is 74, corr. coeff. is 0.988.

Examples

Compound		<i>RI</i> experimental	RI prediction error
	CAS Reg.no. 670804, a psychedelic drug	1260	71
	CAS Reg.no. 6463214, a diuretic	2195	-9

Conclusions

- Improvements necessary and probably possible.
- Promising approach to support the identification of unknown compounds exhibiting very similar mass spectra but different retention indices.

Rltox-poster-Budapest-2003-i.doc 2003-10-15 Prediction of GC retention indices Page 6 / 6