Prediction of heating value of biomass fuel and ash melting behaviour using elemental compositions of fuel and ash

A. Friedl¹, E. Padouvas², H. Rotter³ K. Varmuza *

Vienna University of Technology Institute of Chemical Engineering

Thermal Process Engineering and **Process Simulation**

Laboratory for ChemoMetrics

* Chemometrics, presenting author

¹ Thermal Process Engineering

² Laboratory for Combustion Systems ³ Analytical chemistry

Address: Getreidemarkt 9/166-2, A-1060 Vienna, Austria

Poster Presentation: CAC 2004, 9th International Conference on Chemometrics in Analytical Chemistry, 20 - 23 Sept. 2004, Lisbon, Portugal

Introduction

Biomass has increasing importance as fuel.

Biomass is renewable, and incineration does not affect the overall CO₂ balance in the atmosphere.

PCA has been applied for a cluster analysis of biomass samples, based on elemental compositions*.

work Two technological properties

THIS

- heating value of biomass¹,
- softening temperature of ash² from biomass incineration

have been modeled by the elemental compositions of the samples^{*}. using OLS, PLS and a KNN-approach.

- HHV, higher heating value (gross calorific value) is the enthalpy of combustion including the condensation enthalpy of water; HHV has been measured by bomb calorimetry.
- 2 **SOT**, softening temperature (deformation temperature) is the temperature at which the first signs of rounding, due to melting, of the tip or edges occur; SOT has been measured by a heating microscope.

* K. Reisinger, C. Haslinger, M. Herger, H. Hofbauer: BIOBIB a database for biofuels, THERMIE Conference: Renewable Energy Database, Harwell UK, 1996.

kvarmuza@email.tuwien.ac.at

afriedl@mail.zserv.tuwien.ac.at

epad@mail.zserv.tuwien.ac.at

www.lcm.tuwien.ac.at

www.vt.tuwien.ac.at

heinz.rotter@aon.at

Cluster analysis of biomass

n = 154 biomass samples of very different origin

Different types of wood material, bark, grass, rye, wheat, rape, sunflower, reed, brewery waste, poultry litter, sewage sludge.

p = 6 features

Mass % of C, H, N, S, Cl, ash in dry biomass (autoscaled).

Heating value of biomass

n = 122 biomass samples from plant materials

Wood, wood waste, bark, miscanthus grass, rye, wheat, rape, sorghum, sunflower, alfalfa, maize, flax, ...

p = 1 - 25 features

7 basic features are mass% of C, H, N, S, O, Cl, ash in dry biomass; derived features are square and cross terms, ratios, and logarithms.

	р	т	Features	Meth.	R ² cv	SEP	Remarks
	1	1	С	OLS	0.887	476	
	4	3	C, C ² , H, N	OLS	0.930	376	
Γ	5	3	C, C ² , H, C*H, N	OLS	0.935	362	BEST MODELS
-	5	3	C, C ² , H, C*H, N	PLS	0.935	361	4 components
	6	6	C, H, N, S, Cl, ash	PLS	0.908	429	5 components
	25	6	C, H, N, S, Cl, ash, derived features	PLS	0.928	379	14 components
	5	5	C, H, N, S, O		0.814	777*	Boie (1957)
	4	4	C, H, S, O		0.807	837*	Dulong (1912)
	6	6	C, H, N, S, O, ash		0.807	851*	Mason (1983)
	4	4	C, H, S, O		0.736	910*	Mott (1940)
	5	5	C,H, N, S, O		0.762	990*	Wilson (1972)

m, number of analytical measurements used; R^2_{cv} , SEP (standard error of prediction) from leaveone-out cross validation; * bias-corrected models, see Summary

Softening temperature of ash

n = 99 ash samples from biomass incineration

p = 8 features

8 basic features are relative mass concentrations of Na₂O, K₂O, MgO, CaO, Al₂O₃, SiO₂, P₂O₅, Fe₂O₃ (sum = 100); derived features are concentration ratios, square and root terms.

р	т	Features	Meth.	R ² cv	SEP	Remarks
1	4	(Na ₂ O + K ₂ O) / (MgO + CaO)	OLS	0.320	153	
8	8	basic features	PLS	0.412	142	4 components
20	8	basic + derived features	PLS	0.422	142	3 components
8	8	basic features	KNN*	0.467	135	5 neighbors, better than PLS
4	4	K ₂ O, CaO, Al ₂ O ₃ , P ₂ O ₅ (sum = 100)	PLS	0.780	57	BEST MODEL (<i>n</i> =67, obvious outliers removed)

* mean of *SOT* from 5 nearest neighbors (Euclidean distance); 5 neighbors yield best prediction. *m*, number of analytical measurements used; R^2_{cv} , *SEP* (standard error of prediction) from leaveone-out cross validation.

Summary

Higher heating value of dry biomass consisting of plant material

HHV[kJ/kg] =

= 1.87 C ² - 144 C - 2820 H + 63.8 C*H + 129 N + 20147	(OLS)
= 5.22 C ² - 319 C - 1647 H + 38.6 C∗H + 133 N + 21028	(PLS)

C, H, N are mass% carbon, hydrogen, nitrogen, resp., in dry biomass.

The two models have quite different regression coefficients, but almost identical performances (*SEP* = 362 and 361, R^{2}_{cv} = 0.935).

These models explain deviations from the average; they are applicable to samples similar to the used biomass samples.

SEP = 361 kJ/kg corresponds to 1.4 - 2.3% of *HHV*.

In contrary, most models from literature (Boie, Dulong,...) use an intercept of zero. Bias-corrected predictions of these models still show much higher *SEP* with 777- 990 kJ/kg than the new models.

Softening temperature of ash from biomass

 $SOT[^{\circ}C] =$

= 1.81 c(CaO) + 4.20 $c(AI_2O_3)$ - 2.41 $c(K_2O)$ + 5.31 $c(P_2O_5)$ + 1017

c(.) are relative mass concentrations in ash, normalized to sum 100.

This model is useful for plausibility checks of experimental results, and allows semi-quantitative estimations of softening temperatures. SEP = 57 °C corresponds to 4 - 9% of *SOT*.