Introduction

Constitutionally (or topologically) equivalent atoms (bonds) have the same neighborhood in terms of connectivity given by atom (bond) types and form an orbit.
The complete information for this is contained in the automorphism group of a graph representing the molecular structure. Automorphism means: mapping a graph onto itself while not cutting any bonds.
The size of the automorphism group (α) is the number of possible mappings; it is a symmetry measure for the graph. Asymmetric structures have $\alpha=1$ (only the identity mapping); for highly symmetric structures α may be large. SubMat computes for each chemical structure in an SDF-input-file the complete automorphism group and related parameters. Results are provided in a text file, containing e. g., size of the automorphism group, atom and bond orbit data, and recognition of asymmetric C -atoms [1].
Chemical structures are processed by SubMat as colored graphs considering the different elements and different bond types (single, double, triple, aromatic).
[1] Varmuza K. et al.: submitted (2021)

Info: Kurt Varmuza

kurt.varmuza@tuwien.ac.at, www.lcm.tuwien.ac.at/vk/ c/o Vienna University of Technology (Austria)

Example: Alkanes

For all 618047 alkane isomers C_{4} to C_{20} (trees) the automorphism data have been generated by SubMat [1].

An isomer of $\mathrm{C}_{17} \mathrm{H}_{36}$ has the highest $\alpha=31104$.

Example: CNO-compounds

For a set of 2265 structures $\mathrm{C}_{0-18} \mathrm{~N}_{0-6} \mathrm{O}_{0-7} \mathrm{H}_{\mathrm{z}}$ (H-depleted, no duplicates) from a mass spectra library the automorphism and orbit data have been computed by SubMat. Computing time 2 s (3.4 GHz processor, MS Windows 10); result file $0.8 \mathrm{MB} . \alpha=1-1296$; number of asymmetric C -atoms $=0-8$.

Example: $\mathrm{C}_{14} \mathrm{H}_{21} \mathrm{NO}_{2}$
Results from SubMat:
$\alpha=12$; one asymm. C-atom 7 ;
no. atom orbits $=13(10$ with $C)$;
no. bond orbits = 12; elements, bond types considered.

