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Data problems and approaches Robust and sparse multi-group classification [5]

¢ OQutliers in the data may distort models heavily. * The optimal scoring approach
Robust statistics: model estimation based on the majority of the data. — lteratively transform categorical class membership into continuous values: the optimal
scores.
— Optimal scores are used as response in a regression model.

— Reduction of the influence of single ob- Solveforh=1,...,H
servations on the model estimation. 1
— |dentification of outliers, i.e. observations in _ _ 2 T _ T _
s min H YO, X,BhH S.1. Hh Do, =1, Qh D6, =0,
which are different than the majority. Bn.On N

Ordinary least squares (—): minimize sum of where Q, = [Qn_1,0n_1]isa K x hmatrix, D= 1 Y'Y is a K x K diagonal matrix of
squared residuals class proportions and Y the dummy matrix of class memberships.

Least trimmed squares [7] (—): minimize sum

, ® Developments in robust sparse regression can be transferred to multi-group classification
of smallest 75% of squared residuals
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e e \We combine Lasso regression with the iterative reweighting algorithm to down-weight the

Uninformative variables do not contribute to the explanation of the response, but incre- influence of outliers.

ase model uncertainty. _ s s : : :
Sparse modeling: estimation with intrinsic variable selection. Robust and sparse multi-group classification via the optimal scoring approach

Example: Lasso regression [8]

min ~[IX8 — y[I* + AlIB|| (1) | (b)

— Applicable also for data sets X with less observations n than variables p.
— Favors zeros in coefficient vector 3. Reduction of noise — increasing model precision.
— ldentification of relevant variables, easier to interpret.

Mahalanobis distances

e Correlated predictor variables lead to ill conditioned covariance matrix of X and un-

stable estimates of 3.

— In partial least squares regression (PLS) [9] uncorrelated latent variables are construc-
ted from linear combinations of the original variables, such that the squared covariance 100 150
to the response y is maximized. Then a linear regression model is estimated on the
latent variables.

— In elastic net [10] regression an L, penalty is added to (1). Correlated variables tend (a) Visualization of the robustly transformed subspace; (b) Mahalanobis distances to the
to obtain similar coefficient estimates. group centers in the subspace.

Index

Sparse partial robust M regression [1] Robust linear and logistic models with elastic net [6]

First robust and sparse methods with elastic net penalty.
| | — Induces sparsity on the coefficients by Ly penalty.
Combines ideas from — Favors similar coefficient values for correlated variables due to L, penalty.

®* Robust PLS [2] : Based on C-step algorithm from fast least trimmed squares regression [7].
lteratively down-weight the influence of out- :

liers on the construction of latent variables
as well as the regression model.

Mass spectra of 2 groups: meteorites Renazzo
and Ochansk.

* Sparse PLS [3] | with ng = 110 and np = 160 observations, re-
Latent variables are constructed only with a spectively.

subset of the original variables. ) Oh Number of variables: p = 1540

Biplot of a sparse and robust PLS Evaluation by trimmed mean negative loglikeli-
model with p = 5571 variables. hood (MNLL).

Simulation results: comparison with PLS, sparse PLS (SPLS) and robust PLS (PRM) in model typ  # variables  trim. MNLL o I

terms of mean squared prediction error (MSPE) elastic net 136 0.00866 i
enet-LTS 397 0.00014 -0.6 -04  -02 0.0 0.2 0.4

Pearson residuals elastic net
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