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Data problems and approaches
• Outliers in the data may distort models heavily.

Robust statistics: model estimation based on the majority of the data.
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– Reduction of the influence of single ob-
servations on the model estimation.

– Identification of outliers, i.e. observations
which are different than the majority.

Ordinary least squares (–): minimize sum of
squared residuals
Least trimmed squares [7] (–): minimize sum
of smallest 75% of squared residuals

• Uninformative variables do not contribute to the explanation of the response, but incre-
ase model uncertainty.

Sparse modeling: estimation with intrinsic variable selection.

Example: Lasso regression [8]

min
β

1
n
‖Xβ − y‖2 + λ‖β‖1 (1)

– Applicable also for data sets X with less observations n than variables p.
– Favors zeros in coefficient vector β. Reduction of noise→ increasing model precision.
– Identification of relevant variables, easier to interpret.

• Correlated predictor variables lead to ill conditioned covariance matrix of X and un-
stable estimates of β.
– In partial least squares regression (PLS) [9] uncorrelated latent variables are construc-

ted from linear combinations of the original variables, such that the squared covariance
to the response y is maximized. Then a linear regression model is estimated on the
latent variables.

– In elastic net [10] regression an L2 penalty is added to (1). Correlated variables tend
to obtain similar coefficient estimates.

Sparse partial robust M regression [1]

Combines ideas from
• Robust PLS [2]

Iteratively down-weight the influence of out-
liers on the construction of latent variables
as well as the regression model.

• Sparse PLS [3]
Latent variables are constructed only with a
subset of the original variables.
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Biplot of a sparse and robust PLS
model with p = 5571 variables.

Simulation results: comparison with PLS, sparse PLS (SPLS) and robust PLS (PRM) in
terms of mean squared prediction error (MSPE)
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Sparse and robust PLS for binary classification [4]
• Initial down-weighting of potential outliers.
• Step 1: Iteratively re-weighting to estimate robust sparse PLS directions.
• Step 2: Robust LDA in the sparse score space.

• Down-weighting of outliers in the predictor
space and for observations with potentially
wrong class labels.

• Outlier detection group wise.
• Use outlier weights for robust LDA in the

score space.
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Robust and sparse multi-group classification [5]
• The optimal scoring approach

– Iteratively transform categorical class membership into continuous values: the optimal
scores.

– Optimal scores are used as response in a regression model.

Solve for h = 1, ... , H

min
βh ,θh

1
n
‖Yθh − Xβh‖2 s.t. θT

h Dθh = 1, QT
h Dθh = 0,

where Qh = [Qh−1, θ̂h−1] is a K × h matrix, D = 1
n Y T Y is a K × K diagonal matrix of

class proportions and Y the dummy matrix of class memberships.

• Developments in robust sparse regression can be transferred to multi-group classification
problems.

• We combine Lasso regression with the iterative reweighting algorithm to down-weight the
influence of outliers.

Robust and sparse multi-group classification via the optimal scoring approach

(a) Visualization of the robustly transformed subspace; (b) Mahalanobis distances to the
group centers in the subspace.

Robust linear and logistic models with elastic net [6]
• First robust and sparse methods with elastic net penalty.

– Induces sparsity on the coefficients by L1 penalty.
– Favors similar coefficient values for correlated variables due to L2 penalty.

• Based on C-step algorithm from fast least trimmed squares regression [7].

• Mass spectra of 2 groups: meteorites Renazzo
and Ochansk.

• with nR = 110 and nO = 160 observations, re-
spectively.

• Number of variables: p = 1540
• Evaluation by trimmed mean negative loglikeli-

hood (MNLL).
model typ # variables trim. MNLL
elastic net 136 0.00866
enet-LTS 397 0.00014
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