Organisch-chemische Substanzen in 67P-Kometenpartikel

Zwischen Hoffnung und Realität

Kurt Varmuza

Technische Universität Wien

www.lcm.tuwien.ac.at/vk/

Vortrag: Symposium *Die Kometen-Mission Rosetta*, NHM Wien, 12. Juli 2018 Selektiert und teilweise editiert, 6.9.2018

DIE BEOBACHTUNG: AUF KOMETEN ENTSTEHEN KOMPLEXE ORGANISCHE STOFFE

Roetla hat bestäligt, dass Kometen Aminosäuren beherbergen. Diese

... Kometen Aminosäuren beherbergen.
... belegt nicht, dass Leben von den Kometen stammt.

Wasser, "organische" Substanzen, (Aminosäuren, etc., ...), Mineralien , ...

Extraterrestrisches Material chemisch-physikalisch, ... untersuchen

Extraterrestrisches Material

Kommt von selbst

Meteorite (ca 100 t / Tag)

Sammeln vor Ort und retour zur Erde

Stardust (Kometen-Vorbeiflug), Hayabusa (Asteroid)

Messen vor Ort

Instrumente auf Mond, Mars, ...

Giotto, Vega (Kometen-Vorbeiflug)

Rosetta (ca 2 Jahre nahe einem Kometen - und Landung)

COmetary Secondary Ion MAss Spectrometer

Sammeln von Staubpartikel

ca 5 - 100 km vom Kometen, auf Metall (Gold)-Plättchen, Auftreffgeschwindigkeit: 3 - 10 m/s

Fotos der gesammelten Staubpartikel 0.02 - 1 mm Durchmesser, stark strukturiert, locker, einige 1000 Partikel dokumentiert

-----*

Analyse der Oberfläche ausgewählter Staubpartikel Sekundärlonen-MassenSpektrometer (SIMS),

Elemente, Moleküle und Bruchstücke, Isotopenhäufgkeiten

C, H, N, O - Substanzen

MASSEN SPEKTROMETRIE

mass spectrometry

MASSEN SPEKTROMETRIE

mass spectrometry

MASSEN SPEKTROMETRIE

mass spectrometry

MASSEN SPEKTROMETRIE Ionisierung

Elektronenstoßlonisierung **Electron Impact**

 $M + e^{-} (40 - 70 \text{ eV}) --> M^{+} + 2 e^{-}$ $F_1^+, F_2^+, ...$ (Fragmente)

ROSINA (an Bord Rosetta), COSAC (Philae)

Sekundärlonen-Massen-**Spektrometrie**

Secondary Ion Mass Spectrometry

MASSEN SPEKTROMETRIE Massen-Analysator

Trennung der Ionen nach Masse/Ladung (m/z):

- **O** Magnetisches Feld
- **O** Elektrisches Feld
- **O** Hochfrequente elektrische Felder
- **O** Flugzeit im *feldfreien* Raum

Flugzeit-Massenspektrometrie

Time-Of-Flight mass spectrometer, TOF

Flugzeit = $a + b^*$ (Masse/Ladung)^{0.5}

COSIMA

MASSEN SPEKTROMETRIE Datenauswertung, Interpretation

Qualitative und/oder quantitative Auswertung:

- Spektrenvergleich (Referenzproben, Datenbanken)
- Verhältnisse, Korrelationen, ...
 der Häufigkeiten selektierter lonen
- Methoden der multivariaten Statistik, machine learning, KI, ...

Ionenmasse, Ionenhäufigkeit

Daten:

Interpretation

COSIMA for mounting on Rosetta and in laboratory

... it worked in space !!!

Laboratory twin instrument in a vacuum container, Max Planck Institute for Solar System Research, 2005

(Organische) Substanzen in der Gasphase

```
N_2, O_2

H_2O

CO, CO_2, CH_4, C_2H_4

CH_3OH, CH_2O, HCOOH

NH_3, HCN

CH_3CN, CH_3NH_2, C_2H_5NH_2

NH_2 - CH_2 - COOH

H_2S, CH_2S, SO_2, CS_2
```

Selektion: 20 von ca 45, max. MG 75

ROSINA: an Bord von Rosetta GC-MS-TOF und HR-MS mit m/∆m 9000 (50%) Univ. Bern, Kathrin Altwegg et al.

Prebiotic chemicals, ... Zoo ... [ORF: ... riecht nach Stall] [Kurier: ... wie ein Iltis]

Altwegg K. et al.: Sci. Adv. 2016; 2, e1600285

COSIMA-Daten von Kometen-Partikel

Inhalt

Vergleich: CC-Meteorite / Kometenpartikel
 Suche nach Ionen mit C, H, N, O

1 mm

- Selektion von Daten
 - Datenauswertung: univariat, multivariat

50 000 t/Jahr; ca 4.6 % davon **kohlige Chondrite** (bis zu 3% Kohlenstoff) (Carbonaceous Chondrites), CC-Meteorite

Extraterrestrisches Material, das (vielleicht) am ähnlichsten den Kometen.

Proben von vier CC-Meteoriten:

Allende Lancé

Murchison Renazzo

Präpariert auf Gold-Plättchen: Cécile Engrand, Univ. Paris-Sud, Orsay

Meßfläche (primäre Ionen): ca 35 μm x 50 μm

n(CC) = 540

Elektronenmikroskopie-Bild: Franz Brandstätter (NHM)

www.esa.int/spaceinimages/

Daten von 9 Kometenpartikel; typ. 30 - 80 Messungen pro Partikel.

n(Ko) = 435

CC-Daten

Ko-Daten

Charakterisierung der chemischen Zusammensetzung der Proben

gemeinsame numerische Auswertung

Beispiel – Daten: Vergleich der Klassen-Mittelwerte

Beispiel – Daten: Bivariate Scatter-Plots

2 3 4 5 6 7 9 1 8 15 12 24 27 13 14 39 40 56 С CH CH3 Messung CH₂ Mg Al K Ca Fe CC 1 3 2 4 6 20 12 15 27 11 (540) 2 540 . . Ко 541 32 14 12 13 5 11 8 2 3 (435) 542 975 . . optimale Projektionsachsen (PCA) x-Achse y-Achse

Beispiel – Daten: Multivariate Auswertung (PCA)

PCA

<u>Principal Component Analysis</u> Hauptkomponentenanalyse

Beispiel – Daten: Multivariate Auswertung (Chernoff Faces)

- Honda N. et al.: *Pattern Recognition* **15**, 231 (1982) Medizinische Daten als Gesicht.
- Yeung E.S.: Anal. Chem. **52**, 1120 (1980). Chem. Daten als Melodie (sonification).
- Varmuza K., Filzmoser P.: Introduction to multivariate statistical analysis in chemometrics, CRC Press, Boca Raton, FL (2009)

Beispiel – Daten: Multivariate Auswertung (Chernoff Faces)

	or and a local and a local and a	1	2	3	4	5	6	7		89	PU 10/00 10/00 10/00 10/00 10/00	Stic	hprobe:		
00 YANG YANG YANG YANG YANG YANG YANG YANG	ACCOUNT OF A DATE OF	12	13	14	15	24	27	39	4	0 56	NO 1000 1001 1001 1000 10	15 (CC-Messu	ungen (vo	on 540)
Messung		С	CH	CH ₂	CH3	Mg	Al	K	Ca	a Fe		15	O-Messi	ingen (vo	n 435)
CC (540) 54	1 2 	3	2	4	6	20	12	15		1 () ()		2	3 5 6	, ,	s 5 10
KO 54 (435) 54 97	11 12 75	32 	14	12	8	13	2	5			CC			14 (On A) A	15
			3 T T A	2	2 8 8	??					Ко		13	19 24 23 23	20 4 25 50 30 50

Beispiel – Daten: Multivariate Auswertung (Dendrogramm)

Clusteranalyse

8

8

\$

\$

Beispiel – Daten: Multivariate Auswertung (Dendrogramm)

CHNO-Substanzen in Kometen-Partikel

COSIMA TOF-SIMS-Massenspektrum (Kometenpartikel):

COSIMA TOF-SIMS-Massenspektrum (Kometenpartikel):

5^{*} mögliche Ionenformeln mit Masse ca 30 Da ^(29 Spektren von Partikel Sai)

CHNO-Substanzen in Kometen-Partikel

Gasanalyse durch Instrument **ROSINA** (an Bord von Rosetta), Altwegg K. et al., 2016 doppelfokussierendes Massenspektrometer (DFMS), $m/\Delta m$ ca 9000, Elektronenstoß-Ionisierung (EI)

NIST-Massenspekren-Sammlung mit ca 100 000 Spektren (Beilstein-Datenbank: 10 Millionen): Substanzen mit Molekularmasse 30 – 300, mit C und N, sonst nur H, O; mit Peak im Spektrum bei m/z 30 (2 – 100% B): **4909 Treffer**

Kurzer Ausflug in *kombinatorische Explosionen* in der organischen Chemie

Glycin	C2 H5 N O2	Mw 75	84 Isomere*	davon 6 in NIST DB
Benzol	C6 H6	Mw 78	217 Isomere*	davon 5 in NIST DB, >60 in Beilstein DB
Aspirin	C9 H8 O4	Mw 180	402 560 255 lsc	omere* davon 30 in NIST

Schmitt-Kopplin P. et al.: *PNAS* **107**, 2763 (2010)

High molecular diversity of extraterrestrial organic matter in **Murchison** meteorite revealed 40 years after its fall.

Electrospray ionization (ESI) Fourier transform ion cyclotron resonance/mass spectrometry (FTICR/MS), m/ Δ m ca 1 Million, fast nur (protonierte) Molekülionen

- * Einige 10 000 molekulare Summenformeln CHNOS,
- * daher vermutlich einige Millionen unterschiedliche CHNOS-Substanzen.

* Software *Molgen* (Univ. Bayreuth), Markus Meringer et al., www.molgen.de

Realisierbarer Ansatz für TOF-SIMS COSIMA-Massenspektren ?!

CHNO-Substanzen in Kometen-Partikel

Varmuza K., Filzmoser P., et al.: Journal of Chemometrics. 2018; **32**: e3001.

Organisch-chemische Substanzen in 67P-Kometenpartikel

Ergebnisse aus dem COSIMA Team

Kometenpartikel:

~ 55% Silikate

~ 45% Kohlenstoff-Substanzen (% Masse)

Kohlenstoff-Substanzen: vorwiegend makromolekular (2016)

Ionen C₃H₀₋₄⁺, C₄⁺: ungesättigte organische Verbindungen, keine konkreten CHNO-Substanzen

Elementare Zusammensetzung: Ähnlichkeit mit chondritischen Meteoriten, angereichert mit Si and C

C / Si ~ 5 C / N ~ 30 (atomares Verhältnis)

